An Abstract of the Dissertation Of

Total Page:16

File Type:pdf, Size:1020Kb

An Abstract of the Dissertation Of AN ABSTRACT OF THE DISSERTATION OF Benjamin S. Murphy for the degree of Doctor of Philosophy in Geology presented on May 28, 2019. Title: Magnetotelluric Constraints on Lithospheric Properties in the Southeastern United States Abstract approved: _______________________________________________________ Gary D. Egbert By inverting EarthScope long-period magnetotelluric (MT) data from the southeastern United States (SEUS), we obtain electrical conductivity images that provides key insights into the geodynamics of this region. Significantly, we resolve a highly electrically resistive block that extends to mantle depths beneath the modern Piedmont and Coastal Plain physiographic provinces. As high resistivity values in mantle minerals require cold mantle temperatures, the MT data indicate that the sub- Piedmont thermal lithosphere must extend to greater than 200 km depth. This firm bound appears to conflict with conclusions from seismic results; tomography shows that velocities in this region are generally slightly slow with respect to references models. This observation has led to a seismically-informed view of relatively thin (<150 km), eroded thermal lithosphere beneath the SEUS. However, resolution tests demonstrate that our MT constraints are robust. Furthermore, narrow-band biases in MT transfer functions from the SEUS due to geomagnetic pulsations associated with field-line resonances support the presence of bulk resistive lithosphere in this region. We show that, by considering anelastic prediction of seismic observables, MT and seismic (tomography, attenuation, receiver function) results are in fact consistent with thick (~200 km), coherent thermal lithosphere in this region. Our results demonstrate the danger of interpreting seismic results purely in terms of reference models and the importance of integrating different geophysical techniques when formulating geodynamic interpretations. © Copyright by Benjamin S. Murphy May 28, 2019 All Rights Reserved Magnetotelluric Constraints on Lithospheric Properties in the Southeastern United States by Benjamin S. Murphy A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented May 28, 2019 Commencement June 2020 Doctor of Philosophy dissertation of Benjamin S. Murphy presented on May 28, 2019 APPROVED: Major Professor, representing Geology Dean of the College of Earth, Ocean, and Atmospheric Sciences Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Benjamin S. Murphy, Author ACKNOWLEDGEMENTS The research presented here was supported by the NSF Graduate Research Fellowship Program under Grant 1314109-DGE to Oregon State University. Thanks to Anne Fulton and Bug, Moo, Peanut, and Cinder Fluffton for all their support. Chapter 1: We thank Emily Hart, Kyle Jones, Allen Hooper, Kyle McDonald, Taryn Bye, Eleanor Kester, Lana Erofeeva, Brady Fry, Lu Pellerin, and Adam Schultz for their work in collecting and processing these data. Bo Yang and Naser Meqbel assisted greatly with use of ModEM in this project. Conversations with and input from Nikki Moore, Phil Wannamaker, Dave Graham, Gene Humphreys, Steve Constable, Paul Bedrosian, and Eric Kirby greatly benefited this work. We thank Rob Harris and Brandon Schmandt for valuable feedback on a preliminary version of this paper. We also thank Kate Selway, Ian Ferguson, and Peter Shearer for very helpful reviews of the manuscript. This research was supported by NSF Grant EAR1053628 and by the NSF Graduate Research Fellowship Program under Grant 1314109-DGE. (Copyright for this chapter is held by Elsevier B.V.; it is reproduced here under the Author’s Right to Personal Use.) Chapter 2: We are grateful to Robert McPherron for helping us to understand the physics of geomagnetic pulsations and field-line resonances. We also thank Maxim Smirnov for his help with the robust array processing program. We thank two anonymous reviewers and editor Juanjo Ledo for a helpful review of the manuscript. This research was supported by the NSF Graduate Research Fellowship Program under Grant 1314109-DGE and by NSF Grant EAR1447109. Chapter 3: We thank Brandon Schmandt and Derek Schutt for their valuable insights that inspired and greatly benefited this work. We also thank Uli Faul, Emily Hopper, Jeff Park, Shun Karato, and Tolu Olugboji, who all provided helpful feedback on these calculations and interpretations. Jeff Park inspired the idea that the Piedmont Resistor may possibly represent a Mesozoic example of craton formation. We acknowledge Lara Wagner, Fred Pollitz, and Brandon Schmandt for graciously providing their surface wave tomography models to us for these analyses. We thank Stephan Thiel, an anonymous reviewer, and editor Uli Faul for a helpful and constructive review of this manuscript. This work was supported by the NSF Graduate Research Fellowship Program under Grant 1314109-DGE and by NSF Grant EAR- 1820688. TABLE OF CONTENTS Page Introduction ............................................................................................................................... 1 Chapter 1: Electrical Conductivity Structure of Southeastern North America: Implications for Lithospheric Architecture and Appalachian Topographic Rejuvenation .................................. 3 1.1 Abstract ........................................................................................................................... 4 1.2 Introduction ..................................................................................................................... 4 1.3 Data and Methods ............................................................................................................ 6 1.4 Results ............................................................................................................................. 7 1.5 Discussion ..................................................................................................................... 10 1.5.1 Well Resolved Shallow Structures ......................................................................... 10 1.5.2 Poorly Resolved Structures .................................................................................... 13 1.5.3 Deep Lithospheric Conductivity Contrast and the Piedmont Resistor ................... 14 1.5.3.1 Constraints from the Magnetotelluric Data: Thick Sub-Piedmont Lithosphere14 1.5.3.2 Comparison to Seismic Images: Minor Agreement and Major Conflict.......... 16 1.5.3.3 Possible Explanation: A Metasomatized Lithospheric Root that Regrew after Delamination ................................................................................................................ 18 1.5.3.4 Implications for Appalachian Topographic Rejuvenation ............................... 20 1.6 Conclusions ................................................................................................................... 21 1.7 References ..................................................................................................................... 22 Chapter 2: Source Biases in Mid-Latitude Magnetotelluric Transfer Functions due to Pc3-4 Geomagnetic Pulsations .......................................................................................................... 29 2.1 Abstract ......................................................................................................................... 30 2.2 Introduction ................................................................................................................... 30 2.2.1 The Quasi-Uniform Source Assumption in the Magnetotelluric Method .............. 32 2.2.2 Geomagnetic Pulsations and Field-Line Resonances ............................................ 32 2.3 Data and Methods .......................................................................................................... 34 2.4 Results ........................................................................................................................... 35 2.5 Discussion ..................................................................................................................... 38 2.5.1 Pc’s and the 3D Earth ............................................................................................ 39 2.5.2 Implications for MT Data Inversions ..................................................................... 39 2.5.3 Implications for Earth Structure ............................................................................. 40 2.6 Conclusions ................................................................................................................... 40 2.7 References ..................................................................................................................... 41 TABLE OF CONTENTS (cont.) Page Chapter 3: Synthesizing Seemingly Contradictory Seismic and Magnetotelluric Observations in the Southeastern United States to Image Physical Properties of the Lithosphere ............... 45 3.1 Abstract ......................................................................................................................... 46 3.2 Introduction ................................................................................................................... 46 3.2.1 Geologic setting ....................................................................................................
Recommended publications
  • Mapping the Geothermal System Using AMT and MT in the Mapamyum (QP) Field, Lake Manasarovar, Southwestern Tibet
    energies Article Mapping the Geothermal System Using AMT and MT in the Mapamyum (QP) Field, Lake Manasarovar, Southwestern Tibet Lanfang He 1,*, Ling Chen 1,2, Dorji 3, Xiaolu Xi 4, Xuefeng Zhao 5, Rujun Chen 5 and Hongchun Yao 5 1 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; [email protected] 2 Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China 3 Tibet Bureau of Exploration and Development of Geology and Mineral Resources, Lasa 850000, China; [email protected] 4 School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; [email protected] 5 Information and Geophysics Institute, Central South University, Changsha 410073, China; [email protected] (X.Z.); [email protected] (R.C.); [email protected] (H.Y.) * Correspondence: [email protected]; Tel.: +86-10-8299-8659 Academic Editor: Kamel Hooman Received: 30 July 2016; Accepted: 17 October 2016; Published: 22 October 2016 Abstract: Southwestern Tibet plays a crucial role in the protection of the ecological environment and biodiversity of Southern Asia but lacks energy in terms of both power and fuel. The widely distributed geothermal resources in this region could be considered as potential alternative sources of power and heat. However, most of the known geothermal fields in Southwestern Tibet are poorly prospected and currently almost no geothermal energy is exploited. Here we present a case study mapping the Mapamyum (QP) geothermal field of Southwestern Tibet using audio magnetotellurics (AMT) and magnetotellurics (MT) methods.
    [Show full text]
  • Magnetotellurics and Airborne Electromagnetics As a Combined Method for Assessing Basin Structure and Geometry
    Magnetotellurics and Airborne Electromagnetics as a combined method for assessing basin structure and geometry. Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geophysics. Millicent Crowe October 2012 MT & AEM AS COMBINED EXPLORATION METHOD 1 MAGNETOTELLURICS AND AIRBORNE ELECTROMAGNETICS AS A COMBINED METHOD FOR ASSESSING BASIN STRUCTURE AND GEOMETRY. MT & AEM AS A COMBINED EXPLORATION METHOD ABSTRACT Unconformity-type uranium deposits are characterised by high-grade and constitute over a third of the world’s uranium resources. The Cariewerloo Basin, South Australia, is a region of high prospectivity for unconformity-related uranium as it contains many similarities to an Athabasca-style unconformity deposit. These include features such as Mesoproterozoic red-bed sediments, Paleoproterozoic reduced crystalline basement enriched in uranium (~15-20 ppm) and reactivated basement faults. An airborne electromagnetic (AEM) survey was flown in 2010 using the Fugro TEMPEST system to delineate the unconformity surface at the base of the Pandurra Formation. However highly conductive regolith attenuated the signal in the northern and eastern regions, requiring application of deeper geophysical methods. In 2012 a magnetotelluric (MT) survey was conducted along a 110 km transect of the north-south trending AEM line. The MT data was collected at 29 stations and successfully imaged the depth to basement, furthermore providing evidence for deeper fluid pathways. The AEM data were integrated into the regularisation mesh as a-priori information generating an AEM constrained resistivty model and also correcting for static shift. The AEM constrained resistivity model best resolved resistive structures, allowing strong contrast with conductive zones.
    [Show full text]
  • Preseismic ULF Electromagnetic Effect from Observation at Kamchatka
    Natural Hazards and Earth System Sciences (2003) 3: 203–209 c European Geosciences Union 2003 Natural Hazards and Earth System Sciences Preseismic ULF electromagnetic effect from observation at Kamchatka O. Molchanov1, A. Schekotov1, E. Fedorov1, G. Belyaev1, and E. Gordeev2 1Institute of the Physics of the Earth, Moscow, Russia 2Institute of Geophysical Survey, Petropavlovsk-Kamchatski, Russia Received: 28 May 2002 – Revised: 30 September 2002 – Accepted: 7 October 2002 Abstract. Some results of ULF magnetic field observation level after EQ. They found the most clear effect in the fre- at Karimshino site (Kamchatka, Russia) since June 2000 to quency band F = 0.01 − 0.1 Hz. Molchanov et al. (1992), September 2001 are presented here. Using case study we Kopytenko et al. (1993) observed ULF variation at distance have found an effect of suppression of ULF intensity about 130 km from the EQ epicenter and noted only last stage of 2–6 days before rather strong and nearby seismic shocks the process: increase of ULF intensity in time period from (magnitude M = 4.0 − 6.2). It is revealed for nighttime 3 h before to several days after EQ. and horizontal component of ULF field (G) in the frequency range 0.01 − 0.1 Hz. Then we prove the reliability of the Next researches on this subject were mainly produced in effect by computed correlation between G (or 1/G) and spe- Japan. Hayakawa et al. (1996a) reported results of obser- cially calculated seismic indexes K for the whole period vation the ULF magnetic field variations before great EQ at s = of observation.
    [Show full text]
  • The Electrical Structure of the Central Main Ethiopian Rift As Imaged by Magnetotellurics - Implications for Magma Storage and Pathways
    Edinburgh Research Explorer The Electrical Structure of the Central Main Ethiopian Rift as imaged by Magnetotellurics - Implications for Magma Storage and Pathways Citation for published version: Hübert, J, Whaler, K & Fisseha, S 2018, 'The Electrical Structure of the Central Main Ethiopian Rift as imaged by Magnetotellurics - Implications for Magma Storage and Pathways' Journal of Geophysical Research: Solid Earth. DOI: 10.1029/2017JB015160 Digital Object Identifier (DOI): 10.1029/2017JB015160 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Geophysical Research: Solid Earth Publisher Rights Statement: ©2018. American Geophysical Union. All Rights Reserved. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Apr. 2019 Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE The Electrical Structure of the Central
    [Show full text]
  • Book of Abstracts
    St. Petersburg State University St. Petersburg Branch of the EurAsian Geophysical Society 10th International Conference \PROBLEMS OF GEOCOSMOS" Book of Abstracts St. Petersburg, Petrodvorets, October 6{10, 2014 Supported by Russian Foundation of Basic Research St. Petersburg 2014 Programme Committee Prof. V. N. Troyan Chairman, St.Petersburg University Prof. H. K. Biernat Space Research Institute, Austria Dr. N. V. Erkaev Institute of Computational Modelling SB RAS, Russia Prof. M. Hayakawa University of Electro-Com- munications, Tokyo, Japan Prof. B. M. Kashtan St.Petersburg University Prof. Yu. A. Kopytenko SPbF IZMIRAN, Russia Prof. A. A. Kovtun St.Petersburg University Dr. I. N. Petrov St.Petersburg University Prof. V. S. Semenov St.Petersburg University Prof. V. A. Sergeev St.Petersburg University Dr. N. A. Smirnova St.Petersburg University Dr. N. A. Tsyganenko St.Petersburg University Dr. E. Turunen Sodankyl¨aGeophysical Observatory, Finland Dr. I. G. Usoskin University of Oulu, Finland Prof. T. B. Yanovskaya St.Petersburg University Organizing Committee S. V. Apatenkov N. Yu. Bobrov V. V. Karpinsky A. A. Kosterov M. V. Kholeva M. V. Kubyshkina T. A. Kudryavtseva E. L. Lyskova N. P. Legenkova I. A. Mironova A. A. Samsonov E. S. Sergienko R. V. Smirnova ISBN 978-5-98340-334-5 Contents Section C. Conductivity of the Earth . 5 Section P. Paleomagnetism and Rock Magnetism . 34 Section S. Seismology . 84 Section SEMP. Seismo-ElectroMagnetic Phenomena . 106 Section STP. Solar-Terrestrial Physics . 125 Author index . 215 3 4 Section C. Conductivity of the Earth Geoelectrical and geothermal models of the Pripyat Trough Astapenko, V.N. (State Enterprise \RPCG", Minsk, Belarus), Lev- ashkevich, V.G.(National Academy of Sciences of Belarus) and Logvi- nov, I.M.( Institute of Geophysics NAS of Ukraine, Kiev, Ukraine) Pripyat Trough is a part of regional Palaeozoic { Phanerozoics Pripyat { Dnieper { Donets Palaeorift.
    [Show full text]
  • Appraisal of Electromagnetic Induction Effects on Magnetic Pulsation Studies
    c Annales Geophysicae (2001) 19: 171–178 European Geophysical Society 2001 Annales Geophysicae Appraisal of electromagnetic induction effects on magnetic pulsation studies B. R. Arora1, P. B. V. Subba Rao1, N. B. Trivedi2, A. L. Padilha3, and I. Vitorello3 1Indian Institute of Geomagnetism, Colaba, Mumbai 400 005, India 2Southern Regional Center for Space Research - CRSPE LACESM/CT/UFSM, Santa Maria, RS 97119–900 Brazil 3Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, SP 12201–970, Brazil Received: 12 July 2000 – Revised: 25 October 2000 – Accepted: 28 November 2000 Abstract. The quantification of wave polarization character- tospheric processes, in general, and to understand the gener- istics of ULF waves from the geomagnetic field variations ation and propagation mechanisms of ULF waves, in partic- is done under ‘a priori’ assumption that fields of internal in- ular (Hughes, 1994). In such studies, determination of wave duced currents are in-phase with the external inducing fields. polarization parameters (ellipticity, degree and sense of po- Such approximation is invalidated in the regions marked by larization, azimuth and phase etc.) from the recorded geo- large lateral conductivity variations that perturb the flow pat- magnetic variations, inevitably form the first step. In all fre- tern of induced currents. The amplitude and phase changes quency ranges, the geomagnetic field variations are the vec- that these perturbations produce, in the resultant fields at tor sum of the contributions from the external (source) cur- the Earth’s surface, make determination of polarization and rent system in the ionosphere/magnetosphere and their coun- phase of the oscillating external signals problematic.
    [Show full text]
  • This Is the Title of an Example SEG Abstract Using Microsoft Word 11
    Comparison of 2D Inversion Concepts in Magnetotellurics Viswaja Devalla*, Jagadish Chandra Maddiboyina E-mail: [email protected] Keywords Magnetotellurics, Inversion Concepts, Comparison of the 2D Inversion Concepts. Summary magnetosphere (Vozoff, 1991). These EM signals travel Magnetotellurics is an electromagnetic geophysical method through the atmosphere as radio waves but diffuse into the for inferring the earth’s subsurface electrical conductivity earth and attenuate rapidly with depth. The penetration from measurements of natural geomagnetic and geoelectric depth is called the skin-depth and surface measurement of field variation at the earth’s surface. Commercial uses electric and magnetic fields gives the average Resistivity include hydrocarbon (oil and gas) exploration, geothermal from the surface to a Z equivalent of the skin-depth. The exploration, mining exploration, as well as hydrocarbon increases a frequency decreases, and thus a depth sounding and groundwater monitoring. Research applications include of Resistivity can be achieved by recording a range of experimentation to further develop the MT technique, long- frequencies as illustrated in fig.1 period deep crustal exploration and earthquake precursor prediction research. The data used for the study was a synthetic data. We generated 10 sites of TM-mode AND TE-mode data at 20 frequencies logarithmically spaced from 0.1Hz to 100Hz, from a simple layered 2D model, with layer boundaries. This paper brings the detailed analysis of 2-D modeling procedures and a comparison of 2D inversion concepts. Introduction Magnetotelluric (MT) technique is a passive electromagnetic (EM) method where the diffusion of the EM wave is monitored from surface measurements of the electric and magnetic fields.
    [Show full text]
  • A Review of the Application of Telluric and Magnetotelluric Methods in Geophysical Exploration
    Tropical Journal of Science and Technology, 2020, 1(1), 35 - 47 ISSN: 2714-383X (Print) 2714-3848 (Online) Available online at credencepressltd.com A review of the application of telluric and magnetotelluric methods in geophysical exploration 1Babarinde Boye Timothy and 2Nwankwo Levi I. 1Department of Physics, Kwara State College of Education, Ilorin, Nigeria. 2Geophysics Group, Department of Physics, Federal University Kashere, Gombe State, Nigeria. Corresponding author: [email protected] Abstract This study presents a review of the application of telluric and magnetotelluric field techniques in understanding the subsurface structures of the earth, which stems from the analytical solution of the Maxwell‟s basic wave equations of electromagnetic theory. The work articulates the fundamentals of a magnetotelluric survey, showing how it is applied in the field, and an explanation of its use in solving geophysical problems. Case histories and the advantages and limitations of employing telluric and magnetotelluric field techniques are also discussed. Keywords: Telluric, magnetotelluric, subsurface, geophysical exploration, geoelectrical 1. Introduction provide a wide and continuous spectrum of The last few decades have witnessed EM field waves. These fields induce increased use of natural-source geophysical currents into the Earth, which are measured techniques particularly for petroleum, gas at the surface and contain information about and geothermal explorations, and geo- subsurface resistivity structures (Tamrat, engineering problems. In addition to this, 2010). Magnetotelluric can also be described continuous monitoring of magnetotelluric as a geophysical method that measures (MT) signals to study the earthquake naturally occurring, time-varying magnetic precursor phenomena is now a new initiative and electric fields from which it is possible (Harinarayana, 2008).
    [Show full text]
  • Lightning Data – the New EM “Seismic” Data Interpretation H
    Lightning data – the new EM “seismic” data Interpretation H. Roice Nelson, Jr.,* D. James Siebert, and L. R. Interpretation of passive seismic and lighting data starts Denham, Dynamic Measurement LLC with three-dimensional displays of source locations, and searching for patterns which relate to subsurface geology. The primary patterns in both data types appear to be related Abstract to faulting and fracture orientations. Interpretation of Lightning data base volume sizes, processing, and reflection seismic data includes seismic attribute maps, interpretation processes are a previously unrecognized new which have a direct analog with lightning attribute maps. type of electromagnetic (EM) “seismic” data. There are databases with the location of billions of lightning strikes, Integration along with the basic data defining the waveform of A dozen preliminary studies over the last five years lightning strikes. These data are available to data mine and confirm lightning strike locations are not random. These to integrate with other exploration data. Lightning data has studies included integration with potential field, seismic, been collected for decades for insurance, meteorological, topography, vegetation, infrastructure, and earth tide data and safety reasons (Orville, 2008). Geophysicists have bases. We mapped faults, showed relationship to sediment indirectly used lightning data as an electrical source for thickness, possibly predicting seeps, and mapped magnetotellurics (MT) since the 1950’s (Cagniard, 1953). anisotropy, which has the potential to differentiate between ductile and brittle shales in resource plays. We Learning about the NLDN (National Lightning Detection demonstrated lightning strike location are not dominantly Network) and equivalent worldwide lightning data bases, tied to infrastructure (wells and pipelines), nor are locations we recognized these large lightning databases as a new primarily controlled by either topography or vegetation.
    [Show full text]
  • 024 00Course
    412 UNIVERSITY OF ALBERTA www.ualberta.ca E EAS 497 Directed Study in Human Geography I 211.55 Earth and Atmospheric Sciences, Œ3-6 (variable) (variable, 3-0-0). Prerequisite: Any EAS 39X course. [Faculty of EAS Arts] EAS 498 Directed Study in Human Geography II Department of Earth and Atmospheric Sciences Œ3 (fi 6) (either term, 3-0-0). Prerequisite: EAS 497. [Faculty of Arts] Faculty of Science Listings 211.55.2 Faculty of Science Courses Undergraduate Courses Notes (1) Students are responsible for their own accommodation and meal expenses on 211.55.1 Faculty of Arts Courses all Earth and Atmospheric Sciences field trips. Course Note: See Also INT D 451 for courses which are offered by more than one (2) A list of paleontology courses and course descriptions may be found under Department or Faculty and which may be taken as options or as a course in this Paleontology. discipline. O EAS 101 Introduction to Physical Earth Science O EAS 192 Cultures, Landscapes and Geographic Space Œ3 (fi 6) (either term, 3-0-3). Introduction to the origin of the earth and solar Œ3 (fi 6) (either term, 3-0-0). Introduction to geographical techniques and the system, minerals and rocks, geological time, plate tectonics, and structural geology. spatial organization of human landscapes and significance of the distribution of Geomorphic environments and surface processes, groundwater, and mineral and human activity. Not open to students with credit in EAS 190 or 191. [Faculty of energy resources. [Faculty of Science] Arts] O EAS 102 Introduction to Environmental Earth Science O EAS 293 The Urban Environment Œ3 (fi 6) (either term, 3-0-3).
    [Show full text]
  • Magnetotellurics
    Magnetotellurics Encyclopedia of Geomagnetism and Paleomagnetism 2007 Martyn Unsworth Introduction Magnetotellurics (MT) is the use of natural electromagnetic signals to image subsurface electrical conductivity structure through electromagnetic induction. The physical basis of the magnetotelluric method was independently discovered by Tikhonov ( 1950 ) and Cagniard ( 1953 ). After a debate over the length scale of the incident waves the technique became established as an effective exploration tool (Vozoff, 1991 ; Simpson and Bahr, 2005 ). Basic method of magnetotellurics Electromagnetic waves are generated in the Earth's atmosphere and magnetosphere by a range of physical processes (Vozoff, 1991 ). Below a frequency of 1 Hz, most of the signals originate in the magnetosphere as periodic external fields including magnetic storms and substorms and micropulsations . These signals are normally incident on the Earth's surface. Above a frequency of 1 Hz, the majority of electromagnetic signals originate in worldwide lightning activity. These signals travel through the resistive atmosphere as waves and when they strike the surface of the Earth most of the signal is reflected. However, a small fraction is transmitted into the Earth and is refracted vertically downward, owing to the decrease in propagation velocity (Figure M168 ). The oscillating magnetic field of the wave generates electric currents in the Earth through electromagnetic induction, and the signal propagation becomes diffusive, resulting in signal attenuation with depth. The signals diffuse a distance into the Earth that is defined as the skin depth, δ, in meters by where σ is the conductivity (S m −1 ), f is the frequency (Hz), and µ is the magnetic permeability. The skin depth is inversely related to the frequency and thus low frequencies will penetrate deeper into the Earth.
    [Show full text]
  • 12Th International Conference and School
    St. Petersburg State University 12th International Conference and School “PROBLEMS OF GEOCOSMOS” Book of Abstracts St. Petersburg, Petrodvorets, October 8–12, 2018 St. Petersburg 2018 Chairman: Prof. V.S. Semenov St. Petersburg State University, Russia Vice-chairman: Dr. S.V. Apatenkov St. Petersburg State University, Russia Organizing Committee: Dr. N.Yu. Bobrov,. St. Petersburg State University, Russia Dr. V.V. Karpinsky, St. Petersburg State University, Russia Dr. M.V. Kubyshkina, St. Petersburg State University, Russia Dr. T.A. Kudryavtseva, St. Petersburg State University, Russia Dr. E.L. Lyskova, St. Petersburg State University, Russia N.P. Legenkova, St. Petersburg State University, Russia Dr. I.A. Mironova, St. Petersburg State University, Russia M.V. Riabova, St. Petersburg State University, Russia R.V. Smirnova, St. Petersburg State University, Russia Program Committee: Dr. A.V. Divin, St. Petersburg State University, Russia Prof. I.N. Eltsov, Institute of Petroleum Geology and Geophysics SB RAS, Russia Prof. N.V. Erkaev, Institute of Computational Modelling SB RAS, Russia Prof. B.M. Kashtan, St. Petersburg State University, Russia Dr. P.V. Kharitonskii, St. Petersburg State University, Russia Prof. Yu.A. Kopytenko, SPbF IZMIRAN, Russia Dr. A.A. Kosterov, St. Petersburg State University, Russia Dr. V.E. Pavlov, Schmidt Institute of Physics of the Earth, RAS, Russia Prof. V.N. Troyan, St. Petersburg State University, Russia Prof. V.A. Sergeev, St. Petersburg State University, Russia Dr. E.S. Sergienko, St. Petersburg State University, Russia Dr. N.A. Tsyganenko, St. Petersburg State University, Russia Prof. T.B. Yanovskaya, St. Petersburg State University, Russia Dr. N.V. Zolotova, St. Petersburg State University, Russia 2 CONTENTS SECTION EG.
    [Show full text]