Evoked Versus Auditory-Evoked Escape Swims in Larval Zebrafish
Total Page:16
File Type:pdf, Size:1020Kb
A COMPARISON OF THREE-DIMENSIONAL SWIMMING PATHS DURING VISUALLY- EVOKED VERSUS AUDITORY-EVOKED ESCAPE SWIMS IN LARVAL ZEBRAFISH By Benjamin Bishop A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Arts in Psychology: Academic Research Committee Membership Dr. Ethan Gahtan, Committee Chair Dr. Christopher Aberson, Committee Member Dr. Andrew Kinziger, Committee Member Dr. Christopher Aberson, Graduate Coordinator May 2016 VISUAL AND AUDITORY-EVOKED ESCAPE SWIMS Abstract A COMPARISON OF THREE-DIMENSIONAL SWIMMING PATHS DURING VISUALLY- EVOKED VERSUS AUDITORY-EVOKED ESCAPE SWIMS IN LARVAL ZEBRAFISH Benjamin Harper Bishop Escape behaviors have been studied in zebrafish and aquatic organisms by neuroscientists seeking cellular-level descriptions of neural circuits, but few studies have examined vertical swimming during escapes. I analyzed three-dimensional swimming paths of larval zebrafish during visually-evoked and auditory-evoked escapes while the fish were in a cubical tank with equal vertical and lateral range. A vertical component was found in both visually-evoked and auditory-evoked escapes. The initial 10 seconds of stimulation involved an equal amount of increased vertical and horizontal movement for both escape behaviors, followed by a decrease in total distance traveled below that of spontaneous swimming. These escapes differentiated only after the initial 10 seconds of stimulation, with visually-evoked escapes involving a greater amount of vertical distance travelled and greater decrease in horizontal movement when compared to that of auditory-evoked escapes. To determine how these reflexes develop across ages at which zebrafish larvae are commonly used in behavioral assays, I tested light dimming- evoked and tap-evoked escapes in groups of larvae at 4 different ages: 6, 8, 10, and 12 days post fertilization. Both behaviors were found to not change as the age of the zebrafish increased. A comparison of light dimming-evoked diving in zebrafish to similar behaviors of other aquatic animals suggests it is a protean defense reflex against specific predation threats. These results also imply that future studies of the neural mechanisms of visual behavior in zebrafish should consider vertical movement control elements. ii VISUAL AND AUDITORY-EVOKED ESCAPE SWIMS Table of Contents Abstract ........................................................................................................................................... ii Table of Contents ........................................................................................................................... iii List of Tables .................................................................................................................................. v Table of Figures ............................................................................................................................. vi A Comparison of Three-Dimensional Swimming Paths During Visually-Evoked Versus Auditory-Evoked Escape Swims in Larval Zebrafish .................................................................... 1 Neural Circuits for Escapes in Zebrafish .................................................................................... 2 Literature Review............................................................................................................................ 5 Increasing our Understanding of the Zebrafish Escape Response Repertoire ............................ 5 Development of Visual Escape Response .................................................................................. 8 Directionality of Light Dimming-Evoked Escape Responses .................................................... 9 Behaviors Associated with the nMLF ...................................................................................... 11 Statement of the Problem .............................................................................................................. 16 Hypotheses ................................................................................................................................ 16 Hypothesis 1. ......................................................................................................................... 16 Rational for Hypothesis 1. .................................................................................................... 16 Hypothesis 2a. ....................................................................................................................... 16 Hypothesis 2b. ....................................................................................................................... 16 Hypothesis 2b. ....................................................................................................................... 17 Rational for Hypothesis 2. .................................................................................................... 17 Hypothesis 3. ......................................................................................................................... 17 Rational for Hypothesis 3. .................................................................................................... 17 iii VISUAL AND AUDITORY-EVOKED ESCAPE SWIMS Summary of Research Purpose ................................................................................................. 17 Method .......................................................................................................................................... 18 Data Analysis ............................................................................................................................ 20 Results ........................................................................................................................................... 22 Total Distance Traveled ............................................................................................................ 22 Total Vertical Distance Traveled .............................................................................................. 25 Total Horizontal Distance Traveled .......................................................................................... 29 Vertical Displacement ............................................................................................................... 32 Horizontal and Vertical Component of Dimming-evoked Dive Response .............................. 36 Discussion ..................................................................................................................................... 37 Zebrafish Larvae Escape Swims Include a Negative Vertical Movement ............................... 37 Biphasic Activity Response to Startle Stimuli .......................................................................... 38 Ethological Interpretations of Vertical Escape Swimming ....................................................... 38 Age Effect on Total Distance Traveled .................................................................................... 39 Limitations ................................................................................................................................ 39 Conclusion ................................................................................................................................ 40 References ..................................................................................................................................... 41 iv VISUAL AND AUDITORY-EVOKED ESCAPE SWIMS List of Tables Table 1. Stimulus effects on total swimming distance ................................................................. 23 Table 2. Stimulus effects on vertical swimming distance............................................................. 27 Table 3. Stimulus effects on horizontal swimming distance ........................................................ 30 Table 4. Stimulus effects on vertical displacement ...................................................................... 34 v VISUAL AND AUDITORY-EVOKED ESCAPE SWIMS Table of Figures Figure 1. Schematic of a 6 dpf zebrafish larvae highlighting the axonal and dendritic projections of the MeL and MeM neurons of the nucleus of the medial longitudinal fasciculus (nMLF) ..... 13 Figure 2. Photograph of behavior recording apparatus ................................................................. 19 Figure 3. Difference in total distance traveled between spontaneous and post-stimulus ............. 24 Figure 4. Difference in vertical distance traveled between spontaneous and post-stimulus ........ 28 Figure 5. Difference in horizontal distance traveled between spontaneous and post-stimulus .... 31 Figure 6. Difference in vertical displacement between spontaneous and post-stimulus .............. 35 vi VISUAL AND AUDITORY-EVOKED ESCAPE SWIMS 1 A Comparison of Three-Dimensional Swimming Paths During Visually-Evoked Versus Auditory-Evoked Escape Swims in Larval Zebrafish The microstructure of neural circuits, including the physical patterning of synaptic connections among neurons in the circuit, is essential to how neural circuit’s processes information. But neural circuit microstructure is difficult to study in complex animals because of the large number of neurons and connections and behavioral complexity, which complicates efforts to correlate circuit properties with behavioral functions. Neuroscientists have therefore long studied simple reflex behaviors, especially escapes,