Using KNIME in Metabolomics

Total Page:16

File Type:pdf, Size:1020Kb

Using KNIME in Metabolomics Using KNIME for metabolomics data analysis Visual Programming for Metabolomics Stephan Beisken (PhD) Reza Salek (PhD) Cheminformatics and metabolism The European Bioinformatics Institute (EMBL-EBI) Email: [email protected] Data standards efforts http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648992/ Supported by PhenoMeNal Samples QC C5 S3 S7 C1 C10 QC S1 C3 S5 C7 S6 QC .. Technical Triplicates C5 C5’ C5’’ S3 S3’ S3’’ .. ..’ ..’’ Data analysis and Audit trails DIMS Data Collection Instrument .RAW files IRFC5 IRFC5’ IRFC5’’ IRFS3 IRFS3’ IRFS3’’ IRF.. IRF..’ IRF..’’ C5 C5 C5 S3 S3 S3 .. .. .. Averaged Transients AT AT ’ AT ’’ AT AT ’ AT ’’ AT AT ’ AT ’’ Apodisation, Zero-filling and FFT TIC Filtering Frequency Spectra FSC5 FSC5’ FSC5’’ FSS3 FSS3’ FSS3’’ FS.. FS..’ FS..’’ Calibrant List Mass Calibration and SIM-stitching Stitched Peak Lists SPLC5 SPLC5’ SPLC5’’ SPLS3 SPLS3’ SPLS3’’ SPL.. SPL..’ SPL..’’ Replicate Replicate Replicate Filtering Filtering Filtering • C5 S3 .. blank RFPL RFPL Capturing different step of data Replicate Filtered Peak Lists RFPL RFPL Sample Filtering processing.: Blank Filtering Sample Filtered Peak Matrix SFPM Missing-value • Relationship and reproducibility Filtering PQN Normalisation Batch Spectral Correction Cleaning SFPM PQN SFPM PQN + BATCH SFPM PQN + BATCH + CLEAN Impute Missing Values using KNN SFPM PQN + KNN SFPM PQN + BATCH + KNN SFPM PQN + BATCH + CLEAN + KNN Glog Transformation SFPM PQN + KNN + GLOG SFPM PQN + BATCH + KNN + GLOG SFPM PQN + BATCH + CLEAN + KNN + GLOG Visual Programming • “Visual programming languages enable physicians and other computer users with little knowledge of programming to develop computer software. The physician uses a visual paradigm to "draw" the computer interface and then attaches short segments of computer code to buttons, menus, and list boxes.” Ebell, M. H. (1993). Visual programming languages. M.D. Computing: Computers in Medical Practice, 10(5), 305–11. Motivation • Simplify your (working) life • Data processing and analysis requires various different tools to work together in sequence • Data input and output • Spreadsheets • Data transformation • Transposition, aggregation, string manipulation • ISAcreator • Formatting of tables • Submission to MetaboLights Disclaimer • Workflows are great • It does not have to be KNIME, there are many other solutions • Every method that captures information in a consistent manner and enables reproducibility is great • Transparency • Ability to share data and ‘everything’ that was done to the data Introduction • KNIME: Konstanz Information Miner • http://www.knime.org/ • Developed at University of Konstanz in Germany • Desktop version available free of charge (open source) • Modular platform for building and executing workflows using predefined components: nodes • Core functionality available for tasks such as data mining, analysis, and manipulation • Extra features and functionality available in KNIME through extensions from various groups (community) and vendors • Written in Java based on the Eclipse SDK platform Workflow Concepts • Workflow execution • Can execute complex, multi-step operations on input data • Can be run be “non-experts” using predefined parameter templates ensuring optimal results • Can be set up for specific measurement systems • Can be shared across researchers Functionality • Data manipulation and analysis • File & database I/O, sorting, filtering, grouping, joining, pivoting • Data mining and machine learning • R, WEKA, KNIME, interactive plotting • Cheminformatics • Conversions, similarity, clustering, (Q)SAR analysis, etc. • Scripting integration • R, Perl, Python, Matlab, Octave, Groovy • Reporting and much more • Bioinformatics, HTS & image analysis, network & text mining • Marketing, big data and business analytics Modules (Community Extensions) • http://tech.knime.org/community • Chemoinformatics • CDK (EMBL-EBI), RDKit (Novartis), Indigo (GGA), • ErlWood (Eli Lilly), Enalos (NovaMechanics) • ChEMBL and ChEBI (EMBL-EBI) • Bioinformatics • OpenMS (Tübingen, ETH Zurich) • MassCascade (EMBL-EBI) • HCS (MPI), NGS (Konstanz), Image analysis • Integration • Python, Perl, R, Groovy, Matlab (MPI), PDB web services client (Vernalis), REST and SOAP web service support Workflow Platforms Applications of metabolomics EMBO course Applications metabolite reporting frequency Applications MVDA Calibration Regression Applications Stat Advantages Disadvantages • Intuitive to use • Steep learning cure • No or little programming • Resource greedy experience required • No (free) server edition • Good for prototyping • Slower execution than • Lots of functionality standalone scripts • Very modular and flexible • Active community • Extensible • Visual Feedback Workbench Auto-layout Execute Execute all nodes Node descrip4on tabs workflow projects favorite nodes public server workflow editor node repository outline console Nodes • Node: Basic processing unit of a workflow • performs a particular task Input port(s) – on the leC of icon Title Output port(s) – on the right of icon Icon Status display (‘traffic lights’) Right-click menu Sequence number • Red (not ready) To configure and • Amber (ready) execute the node, • Green (executed) display the output views, edit the • Blue bar during execu4on node, and display (with percentage or flashing) data for the ports Dialogs • Double-click opens configuration dialogs • Explicit column types MassCascade https://bitbucket.org/sbeisken/masscascadeknime/wiki/ExampleWorkflows XCMS http://www.bioconductor.org/packages/devel/data/experiment/manuals/faahKO/man/faahKO.pdf A great example: OpenMS http://ftp.mi.fu-berlin.de/OpenMS/release-documentation/OpenMS_tutorial.pdf Feature Filter Deconvolution A A B B C C Sample Alignment Compound Spectra Compound Spectra OH HO H H H OH OH H O O O H OH HO O OH H O HH OH HO H H H OH HO Extracted Mass Chromatograms Workflow Parameter Tuning Calibration Regression Applications Data Sources Final Remarks • Workflows can make exploratory or repetitive data tasks easier and save time • Extensive data pre-processing functionality • Extensions for statistics, machine learning, bio-, and cheminformatics • Integration of R (XCMS) and spectrometry extensions can help you to build elaborate pipelines and share work • Can help to organize one’s thoughts. • It’s actually quite a bit of fun. Resources • KNIME Forum • http://www.knime.org/ • KNIME Learning Hub • http://www.knime.org/learning-hub • Quickstart Guide • http://tech.knime.org/files/KNIME_quickstart.pdf • Happy to Help • [email protected] .
Recommended publications
  • Text Mining Course for KNIME Analytics Platform
    Text Mining Course for KNIME Analytics Platform KNIME AG Copyright © 2018 KNIME AG Table of Contents 1. The Open Analytics Platform 2. The Text Processing Extension 3. Importing Text 4. Enrichment 5. Preprocessing 6. Transformation 7. Classification 8. Visualization 9. Clustering 10. Supplementary Workflows Licensed under a Creative Commons Attribution- ® Copyright © 2018 KNIME AG 2 Noncommercial-Share Alike license 1 https://creativecommons.org/licenses/by-nc-sa/4.0/ Overview KNIME Analytics Platform Licensed under a Creative Commons Attribution- ® Copyright © 2018 KNIME AG 3 Noncommercial-Share Alike license 1 https://creativecommons.org/licenses/by-nc-sa/4.0/ What is KNIME Analytics Platform? • A tool for data analysis, manipulation, visualization, and reporting • Based on the graphical programming paradigm • Provides a diverse array of extensions: • Text Mining • Network Mining • Cheminformatics • Many integrations, such as Java, R, Python, Weka, H2O, etc. Licensed under a Creative Commons Attribution- ® Copyright © 2018 KNIME AG 4 Noncommercial-Share Alike license 2 https://creativecommons.org/licenses/by-nc-sa/4.0/ Visual KNIME Workflows NODES perform tasks on data Not Configured Configured Outputs Inputs Executed Status Error Nodes are combined to create WORKFLOWS Licensed under a Creative Commons Attribution- ® Copyright © 2018 KNIME AG 5 Noncommercial-Share Alike license 3 https://creativecommons.org/licenses/by-nc-sa/4.0/ Data Access • Databases • MySQL, MS SQL Server, PostgreSQL • any JDBC (Oracle, DB2, …) • Files • CSV, txt
    [Show full text]
  • Imagej2-Allow the Users to Use Directly Use/Update Imagej2 Plugins Inside KNIME As Well As Recording and Running KNIME Workflows in Imagej2
    The KNIME Image Processing Extension for Biomedical Image Analysis Andries Zijlstra (Vanderbilt University Medical Center The need for image processing in medicine Kevin Eliceiri (University of Wisconsin-Madison) KNIME Image Processing and ImageJ Ecosystem [email protected] [email protected] The need for precision oncology 36% of newly diagnosed cancers, and 10% of all cancer deaths in men Out of every 100 men... 16 will be diagnosed with prostate cancer in their lifetime In reality, up to 80 will have prostate cancer by age 70 And 3 will die from it. But which 3 ? In the meantime, we The goal: Diagnose patients that have over-treat many aggressive disease through Precision Medicine patients Objectives of Approach to Modern Medicine Precision Medicine • Measure many things (data density) • Improved outcome through • Make very accurate measurements (fidelity) personalized/precision medicine • Consider multiple perspectives (differential) • Reduced expense/resource allocation through • Achieve confidence in the diagnosis improved diagnosis, prognosis, treatment • Match patients with a treatment they are most • Maximize quality of life by “targeted” therapy likely to respond to. Objectives of Approach to Modern Medicine Precision Medicine • Measure many things (data density) • Improved outcome through • Make very accurate measurements (fidelity) personalized/precision medicine • Consider multiple perspectives (differential) • Reduced expense/resource allocation through • Achieve confidence in the diagnosis improved diagnosis,
    [Show full text]
  • KNIME Workbench Guide
    KNIME Workbench Guide KNIME AG, Zurich, Switzerland Version 4.4 (last updated on 2021-06-08) Table of Contents Workspaces . 1 KNIME Workbench . 2 Welcome page . 4 Workflow editor & nodes . 5 KNIME Explorer . 13 Workflow Coach . 35 Node repository . 37 KNIME Hub view . 38 Description. 40 Node Monitor. 40 Outline. 41 Console. 41 Customizing the KNIME Workbench . 42 Reset and logging . 42 Show heap status . 42 Configuring KNIME Analytics Platform . 43 Preferences . 43 Setting up knime.ini. 47 KNIME runtime options . 49 KNIME tables . 55 Data table . 55 Column types. 56 Sorting . 59 Column rendering . 59 Table storage. 61 KNIME Workbench Guide This guide describes the first steps to take after starting KNIME Analytics Platform and points you to the resources available in the KNIME Workbench for building workflows. It also explains how to customize the workbench and configure KNIME Analytics Platform to best suit specific needs. In the last part of this guide we introduce data tables. Workspaces When you start KNIME Analytics Platform, the KNIME Analytics Platform launcher window appears and you are asked to define the KNIME workspace, as shown in Figure 1. The KNIME workspace is a folder on the local computer to store KNIME workflows, node settings, and data produced by the workflow. Figure 1. KNIME Analytics Platform launcher The workflows and data stored in the workspace are available through the KNIME Explorer in the upper left corner of the KNIME Workbench. © 2021 KNIME AG. All rights reserved. 1 KNIME Workbench Guide KNIME Workbench After selecting a workspace for the current project, click Launch. The KNIME Analytics Platform user interface - the KNIME Workbench - opens.
    [Show full text]
  • Data Analytics with Knime
    DATA ANALYTICS WITH KNIME v.3.4.0 QUALIFICATIONS & EXPERIENCE ▶ 38 years of providing professional services to state and local taxing officials ▶ TMA works exclusively with government partners WHO ▶ TMA is composed of 150+ WE ARE employees in five main offices across the United States Tax Management Associates is a professional services firm that has ▶ Our main focus is on revenue served the interests of state and local enhancement services for state government since 1979. and local jurisdictions and property tax compliance efforts KNIME POWERED CUSTOM ANALYTICS ▶ TMA is a proud KNIME Trusted Consulting Partner. Visit: www.knime.org/knime-trusted-partners ▶ Successful analytics solutions: ○ Fraud Detection (Michigan Department of Treasury) ○ Entity Discovery (multiple counties) ○ Data Aggregation (Louisiana State Tax Commission) KNIME POWERED CUSTOM ANALYTICS ▶ KNIME is an open source data toolkit ▶ Active development community and core team ▶ GUI based with scripting integration ○ Easy adoption, integration, and training ▶ Data ingestion, transformation, analytics, and reporting FEATURES & TERMINOLOGY KNIME WORKBENCH TAX MANAGEMENT ASSOCIATES, INC. KNIME WORKFLOW TAX MANAGEMENT ASSOCIATES, INC. KNIME NODES TAX MANAGEMENT ASSOCIATES, INC. DATA TYPES & SOURCES DATA AGNOSTIC ▶ Flat Files ▶ Shapefiles ▶ Xls/x Reader ▶ HTTP Requests ▶ Fixed Width ▶ RSS Feeds ▶ Text Files ▶ Custom API’s/Curl ▶ Image Files ▶ Standard API’s ▶ XML ▶ JSON TAX MANAGEMENT ASSOCIATES, INC. KNIME DATA NODES TAX MANAGEMENT ASSOCIATES, INC. DATABASE AGNOSTIC ▶ Microsoft SQL ▶ Oracle ▶ MySQL ▶ IBM DB2 ▶ Postgres ▶ Hadoop ▶ SQLite ▶ Any JDBC driver TAX MANAGEMENT ASSOCIATES, INC. KNIME DATABASE NODES TAX MANAGEMENT ASSOCIATES, INC. CORE DATA ANALYTICS FEATURES KNIME DATA ANALYTICS LIFECYCLE Read Data Extract, Data Analytics Reporting or Predictive Read Transform, and/or Load (ETL) Analysis Injection Data Read Data TAX MANAGEMENT ASSOCIATES, INC.
    [Show full text]
  • Sheffield HPC Documentation
    Sheffield HPC Documentation Release November 14, 2016 Contents 1 Research Computing Team 3 2 Research Software Engineering Team5 i ii Sheffield HPC Documentation, Release The current High Performance Computing (HPC) system at Sheffield, is the Iceberg cluster. A new system, ShARC (Sheffield Advanced Research Computer), is currently under development. It is not yet ready for use. Contents 1 Sheffield HPC Documentation, Release 2 Contents CHAPTER 1 Research Computing Team The research computing team are the team responsible for the iceberg service, as well as all other aspects of research computing. If you require support with iceberg, training or software for your workstations, the research computing team would be happy to help. Take a look at the Research Computing website or email research-it@sheffield.ac.uk. 3 Sheffield HPC Documentation, Release 4 Chapter 1. Research Computing Team CHAPTER 2 Research Software Engineering Team The Sheffield Research Software Engineering Team is an academically led group that collaborates closely with CiCS. They can assist with code optimisation, training and all aspects of High Performance Computing including GPU computing along with local, national, regional and cloud computing services. Take a look at the Research Software Engineering website or email rse@sheffield.ac.uk 2.1 Using the HPC Systems 2.1.1 Getting Started If you have not used a High Performance Computing (HPC) cluster, Linux or even a command line before this is the place to start. This guide will get you set up using iceberg in the easiest way that fits your requirements. Getting an Account Before you can start using iceberg you need to register for an account.
    [Show full text]
  • Mathematica Document
    Mathematica Project: Exploratory Data Analysis on ‘Data Scientists’ A big picture view of the state of data scientists and machine learning engineers. ����� ���� ��������� ��� ������ ���� ������ ������ ���� ������/ ������ � ���������� ���� ��� ������ ��� ���������������� �������� ������/ ����� ��������� ��� ���� ���������������� ����� ��������������� ��������� � ������(�������� ���������� ���������) ������ ��������� ����� ������� �������� ����� ������� ��� ������ ����������(���� �������) ��������� ����� ���� ������ ����� (���������� �������) ����������(���������� ������� ���������� ��� ���� ���� �����/ ��� �������������� � ����� ���� �� �������� � ��� ����/���������� ��������������� ������� ������������� ��� ���������� ����� �����(���� �������) ����������� ����� / ����� ��� ������ ��������������� ���������� ����������/�++ ������/������������/����/������ ���� ������� ����� ������� ������� ����������������� ������� ������� ����/����/�������/��/��� ����������(�����/����-�������� ��������) ������������ In this Mathematica project, we will explore the capabilities of Mathematica to better understand the state of data science enthusiasts. The dataset consisting of more than 10,000 rows is obtained from Kaggle, which is a result of ‘Kaggle Survey 2017’. We will explore various capabilities of Mathematica in Data Analysis and Data Visualizations. Further, we will utilize Machine Learning techniques to train models and Classify features with several algorithms, such as Nearest Neighbors, Random Forest. Dataset : https : // www.kaggle.com/kaggle/kaggle
    [Show full text]
  • Direct Submission Or Co-Submission Direct Submission
    Z-Matrix template-based substitution approach Title for enumeration of 3D molecular structures Authors Wanutcha Lorpaiboon and Taweetham Limpanuparb* Science Division, Mahidol University International College, Affiliations Mahidol University, Salaya, Nakhon Pathom 73170, Thailand Corresponding Author’s email address [email protected] • Chemical structures • Education Keywords • Molecular generator • Structure generator • Z-matrix Direct Submission or Co-Submission Direct Submission ABSTRACT The exhaustive enumeration of 3D chemical structures based on Z-matrix templates has recently been used in the quantum chemical investigation of constitutional isomers, diastereomers and 5 rotamers. This simple yet powerful initial structure generation approach can apply beyond the investigation of compounds of identical formula by quantum chemical methods. This paper aims to provide a short description of the overall concept followed by a practical tutorial to the approach. • The four steps required for Z-matrix template-based substitution are template construction, generation of tuples for substitution sites, removal of duplicate tuples and 10 substitution on the template. • The generated tuples can be used to create chemical identifiers to query compound properties from chemical databases. • All of these steps are demonstrated in this paper by common model compounds and are very straightforward for an undergraduate audience to reproduce. A comparison of the 15 approach in this tutorial and other options is also discussed. SPECIFICATIONS TABLE Subject Area Chemistry More specific subject area Cheminformatics Method name Z-matrix template-based substitution Name and reference of original method N/A Source codes are available as supplementary information in this Resource availability paper. 2 of 10 Method details 20 1. Introduction Initial structures (Z-matrix or Cartesian coordinate) are important starting points for the in silico investigation of chemical species.
    [Show full text]
  • Role of Materials Data Science and Informatics in Accelerated Materials Innovation Surya R
    Role of materials data science and informatics in accelerated materials innovation Surya R. Kalidindi , David B. Brough , Shengyen Li , Ahmet Cecen , Aleksandr L. Blekh , Faical Yannick P. Congo , and Carelyn Campbell The goal of the Materials Genome Initiative is to substantially reduce the time and cost of materials design and deployment. Achieving this goal requires taking advantage of the recent advances in data and information sciences. This critical need has impelled the emergence of a new discipline, called materials data science and informatics. This emerging new discipline not only has to address the core scientifi c/technological challenges related to datafi cation of materials science and engineering, but also, a number of equally important challenges around data-driven transformation of the current culture, practices, and workfl ows employed for materials innovation. A comprehensive effort that addresses both of these aspects in a synergistic manner is likely to succeed in realizing the vision of scaled-up materials innovation. Key toolsets needed for the successful adoption of materials data science and informatics in materials innovation are identifi ed and discussed in this article. Prototypical examples of emerging novel toolsets and their functionality are described along with select case studies. Introduction goal of reducing the time and cost of materials development Materials innovation initiatives and deployment by 50%. 1 Essential to achieving this goal is A number of US-based, 1 – 3 as well as international, 4 , 5 efforts are the development and deployment of a supporting infrastruc- now focused on accelerated deployment of advanced materials ture that integrates a wide range of data, experimental, and in commercial products.
    [Show full text]
  • Titel Untertitel
    KNIME Image Processing Nycomed Chair for Bioinformatics and Information Mining Department of Computer and Information Science Konstanz University, Germany Why Image Processing with KNIME? KNIME UGM 2013 2 The “Zoo” of Image Processing Tools Development Processing UI Handling ImgLib2 ImageJ OMERO OpenCV ImageJ2 BioFormats MatLab Fiji … NumPy CellProfiler VTK Ilastik VIGRA CellCognition … Icy Photoshop … = Single, individual, case specific, incompatible solutions KNIME UGM 2013 3 The “Zoo” of Image Processing Tools Development Processing UI Handling ImgLib2 ImageJ OMERO OpenCV ImageJ2 BioFormats MatLab Fiji … NumPy CellProfiler VTK Ilastik VIGRA CellCognition … Icy Photoshop … → Integration! KNIME UGM 2013 4 KNIME as integration platform KNIME UGM 2013 5 Integration: What and How? KNIME UGM 2013 6 Integration ImgLib2 • Developed at MPI-CBG Dresden • Generic framework for data (image) processing algoritms and data-structures • Generic design of algorithms for n-dimensional images and labelings • http://fiji.sc/wiki/index.php/ImgLib2 → KNIME: used as image representation (within the data cells); basis for algorithms KNIME UGM 2013 7 Integration ImageJ/Fiji • Popular, highly interactive image processing tool • Huge base of available plugins • Fiji: Extension of ImageJ1 with plugin-update mechanism and plugins • http://rsb.info.nih.gov/ij/ & http://fiji.sc/ → KNIME: ImageJ Macro Node KNIME UGM 2013 8 Integration ImageJ2 • Next-generation version of ImageJ • Complete re-design of ImageJ while maintaining backwards compatibility • Based on ImgLib2
    [Show full text]
  • Leveraging SAS with KNIME
    Leveraging SAS with KNIME Thomas Gabriel and Phil Winters Copyright © 2013 by KNIME.com AG. All rights reserved. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Copyright © 2013 by KNIME.com AG. All rights reserved. 2 A bit of History: The Original SAS Concept Access Manage Present Analyse Copyright © 2013 by KNIME.com AG. All rights reserved. 4 More Products to meet new requirements EG DI RTD DB2 Macro Oracle PC FILIE Connect Access Manage MM SCL Present Analyse EM ® AF DVD QC JMP OR IML IDP ETS STAT Graph Copyright © 2013 by KNIME.com AG. All rights reserved. 5 Even More Products…. Teradata Hadoop EG DI RTD DB2 Macro Oracle PC FILIE Connect Access Manage MM SCL Present Analyse EM PMML …Model Manager …Model PMML High Performance Analytics Performance High ® AF DVD QC JMP OR IML IDP ETS STAT Graph Text Mining Social Media Analytics R…. in IML in R…. Copyright © 2013 by KNIME.com AG. All rights reserved. 6 Our new reality: You must have Choice and Control New Infrastructures New Data New Other Science Applications New New Users Methods New Business Copyright © 2013 by KNIME.com AG. All rights reserved. Challenges 7 The KNIME Platform Open, Open Source, Free on the Desktop Copyright © 2013 by KNIME.com AG. All rights reserved. 8 The question is not “which is better”…. Copyright © 2013 by KNIME.com AG. All rights reserved. 9 The question is: What’s the Big Difference? SAS KNIME A script-oriented 4GL programming language A Script-free environment in four major parts: comprised of • The DATA step • Nodes and Connectors • Procedure steps • A macro language, • Metanodes and Flow variables for packaging a metaprogramming language • ODS statements • GUIs: are most often front-ends • GUI is the interface to facilitate SAS Program script generation • Through Proprietary Technology “Provide it all” • Through Open Source “Provide it all” Copyright © 2013 by KNIME.com AG.
    [Show full text]
  • Introduction to Label-Free Quantification
    SeqAn and OpenMS Integration Workshop Temesgen Dadi, Julianus Pfeuffer, Alexander Fillbrunn The Center for Integrative Bioinformatics (CIBI) Mass-spectrometry data analysis in KNIME Julianus Pfeuffer, Alexander Fillbrunn OpenMS • OpenMS – an open-source C++ framework for computational mass spectrometry • Jointly developed at ETH Zürich, FU Berlin, University of Tübingen • Open source: BSD 3-clause license • Portable: available on Windows, OSX, Linux • Vendor-independent: supports all standard formats and vendor-formats through proteowizard • OpenMS TOPP tools – The OpenMS Proteomics Pipeline tools – Building blocks: One application for each analysis step – All applications share identical user interfaces – Uses PSI standard formats • Can be integrated in various workflow systems – Galaxy – WS-PGRADE/gUSE – KNIME Kohlbacher et al., Bioinformatics (2007), 23:e191 OpenMS Tools in KNIME • Wrapping of OpenMS tools in KNIME via GenericKNIMENodes (GKN) • Every tool writes its CommonToolDescription (CTD) via its command line parser • GKN generates Java source code for nodes to show up in KNIME • Wraps C++ executables and provides file handling nodes Installation of the OpenMS plugin • Community-contributions update site (stable & trunk) – Bioinformatics & NGS • provides > 180 OpenMS TOPP tools as Community nodes – SILAC, iTRAQ, TMT, label-free, SWATH, SIP, … – Search engines: OMSSA, MASCOT, X!TANDEM, MSGFplus, … – Protein inference: FIDO Data Flow in Shotgun Proteomics Sample HPLC/MS Raw Data 100 GB Sig. Proc. Peak 50 MB Maps Data Reduction 1
    [Show full text]
  • Bringing Open Source to Drug Discovery
    Bringing Open Source to Drug Discovery Chris Swain Cambridge MedChem Consulting Standing on the shoulders of giants • There are a huge number of people involved in writing open source software • It is impossible to acknowledge them all individually • The slide deck will be available for download and includes 25 slides of details and download links – Copy on my website www.cambridgemedchemconsulting.com Why us Open Source software? • Allows access to source code – You can customise the code to suit your needs – If developer ceases trading the code can continue to be developed – Outside scrutiny improves stability and security What Resources are available • Toolkits • Databases • Web Services • Workflows • Applications • Scripts Toolkits • OpenBabel (htttp://openbabel.org) is a chemical toolbox – Ready-to-use programs, and complete programmer's toolkit – Read, write and convert over 110 chemical file formats – Filter and search molecular files using SMARTS and other methods, KNIME add-on – Supports molecular modeling, cheminformatics, bioinformatics – Organic chemistry, inorganic chemistry, solid-state materials, nuclear chemistry – Written in C++ but accessible from Python, Ruby, Perl, Shell scripts… Toolkits • OpenBabel • R • CDK • OpenCL • RDkit • SciPy • Indigo • NumPy • ChemmineR • Pandas • Helium • Flot • FROWNS • GNU Octave • Perlmol • OpenMPI Toolkits • RDKit (http://www.rdkit.org) – A collection of cheminformatics and machine-learning software written in C++ and Python. – Knime nodes – The core algorithms and data structures are written in C ++. Wrappers are provided to use the toolkit from either Python or Java. – Additionally, the RDKit distribution includes a PostgreSQL-based cartridge that allows molecules to be stored in relational database and retrieved via substructure and similarity searches.
    [Show full text]