The Cortisone Legacy

Total Page:16

File Type:pdf, Size:1020Kb

The Cortisone Legacy 1 REVIEW Diamonds are forever: the cortisone legacy Stephen G Hillier, The Queen’s Medical Research Institute, Centre for Reproductive Biology, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK (Requests for offprints should be addressed to S G Hillier; Email: [email protected]) This article is based on the Jubilee Medal lecture delivered by Prof. Hillier in November 2006 celebrating the Diamond Jubilee of the Society for Endocrinology Abstract The year 1946 was not only the year that the Society for developments in endocrinology ever since. This article Endocrinology was founded, but also the year that Edward surveys the extraordinary cortisone timeline, from first Kendall’s compound E (cortisone) was first synthesised by synthesis until now. The concluding scientific message is Louis Sarett. By 1948, sufficient quantities of compound E that intracrine metabolism of cortisone to cortisol via were available for the rheumatologist Philip Hench to test it 11bhydroxysteroid dehydrogenase type 1 likely sustains local successfully for the first time in a patient with rheumatoid amplification of glucocorticoid action at sites of inflammation arthritis. It was immediately hailed as a ‘wonder drug’ and was throughout the body. The broader message is that the shown to be effective in a number of inflammation-associated discovery of compound E by Kendall (basic scientist), its conditions, most notably rheumatoid arthritis. The sub- large-scale synthesis by Sarett (industrial chemist) and its sequent development of endocrinology as a discipline is therapeutic application by Hench (rheumatologist) serves as a inextricably linked to the chemistry, biology and medicine of paradigm for modern translational medicine. It is concluded anti-inflammatory glucocorticoids. Sixty years after the first that endocrinology will remain a force in health and disease if chemical synthesis of cortisone, corticosteroids remain among it continues to evolve sans frontie`res at the basic/applied/cli- the top ten most commonly used prescription and over the nical science interface. A challenge for the Society for counter drugs. Basic and clinical studies of glucocorticoid Endocrinology is to ensure this happens. biosynthesis, metabolism and action have trail-blazed Journal of Endocrinology (2007) 195, 1–6 Introduction synthesis and therapeutic applications are celebrated as a paradigm for modern translational medicine. The Society for Endocrinology was founded in 1946 ‘to promote the advance of endocrinology by observational or clinical studies’. The year 1946 was also the year that Lewis The steroid rush Hastings Sarett, an organic chemist at Merck Research Labs in the USA, published the first synthesis of a recently discovered The bedrock of the Society for Endocrinology is steroid adrenal steroid hormone named ‘compound E’ (Sarett 1946). chemistry, which entered its heyday during the 1930s. Compound E had been crystallised from bovine adrenal Landmark developments around that time included elucida- glands 10 years earlier by Edward Calvin Kendall (Mason et al. tion of the signature perhydrocyclo-pentanophenanthrene 1936). Kendall’s compound E would eventually be known as steroid structure by Otto Rosenheim and Harold King in ‘cortisone’ (Kendall 1953) and become one of the wonder 1932 (Feiser & Feiser 1959) and introduction of the general drugs of the 20th century. Hence, 2006 was the diamond name ‘steroid’ in 1936 to cover all compounds with a sterol- jubilee year of both the UK Society of Endocrinology and the like skeleton (Klyne 1957). The sex steroids oestradiol, first synthesis of compound E. This brief review traces the testosterone and progesterone were discovered between 1929 impact of cortisone on the development of steroid and 1935, followed by the adrenocortical hormones, endocrinology from then until now. The concept is advanced cortisone and cortisol, in 1935–1938. By 1937, most of the that its intracrine activation to cortisol at sites of inflammation classic steroid hormones had been isolated and their structures supports both natural and therapeutic anti-inflammatory determined (Feiser & Feiser 1959). Following a hiatus during effects of cortisone. More broadly, cortisone’s discovery, WWII, the field was massively boosted in 1948 by the Journal of Endocrinology (2007) 195, 1–6 DOI: 10.1677/JOE-07-0309 0022–0795/07/0195–001 q 2007 Society for Endocrinology Printed in Great Britain Online version via http://www.endocrinology-journals.org Downloaded from Bioscientifica.com at 09/29/2021 04:43:42AM via free access 2 S G HILLIER . Cortisone and inflammation announcement of the dramatic therapeutic effects of cortisone By January 1950, Kendall & Hench had named compound E (see below) and the race to synthesise more and more steroid as cortisone to avoid its confusion with vitamin E (Kendall analogues with beneficial therapeutic effects. By 1956, 10 1964). In the same year, Kendall & Hench shared the Nobel years after the Society was founded, the number of novel Prize for Physiology or Medicine ‘for research on the steroidal substances synthesised had risen to over 7000 (Klyne structure and biological effects of adrenal cortex hormones’ 1957). During this period, the mineralocorticoid aldosterone with Tadeus Reichstein who had independently discovered was also discovered (Simpson et al. 1953). The first Society for cortisone at around the same time as Kendall and named it Endocrinology Medal was awarded to the co-discoverer of substance Fa (Reichstein 1936). aldosterone, James F Tait, in 1968. Significantly, the obverse prominently displays the perhydrocyclo-pentanophenan- threne steroid nucleus. Diamond decades Ever since it was ‘launched’ as a pharmaceutical in 1950 Kendall’s compounds (Kendall 1964), cortisone and a succession of closely related synthetic analogues have remained among the most widely Compound E was first isolated in 1935 from bovine adrenal prescribed medications in the world. At the same time, the glands along with a series of structurally related steroids science of endocrinology – particularly steroid endocrinology (including cortisol, then named compound F) capable of – has advanced beyond recognition. Understanding how improving muscular strength when administered to adrenal- cortisone is formed, metabolised and acts in health and disease ectomised rats or dogs (Mason et al. 1936, Reichstein 1936). has been integral to this progress, as is now considered. Individual steroid yields were only between 85 and 500 mg cortisone per 100 lb adrenal glands (Feiser & Feiser 1959). 1950s: steroid chemistry Therefore it was initially agreed that their use should be confined to small animals and none should be employed for Kendall (1964) initially believed it, ‘.highly improbable that clinical medicine (Hench 1964). The impetus to develop any product will ever be found which can be used in place of synthetic methods for adrenocorticosteroids came from the cortisone and the closely related compound F’. Compound F US entry into WWII in 1941, initially fuelled by a rumour (hydrocortisone; cortisol) quickly became the first topically that Luftwaffe pilots were taking adrenal extracts to increase applied corticosteroid effective in a variety of inflammatory their resistance to oxygen deprivation at high altitudes. skin disorders (Sulzberger & Witten 1952, Ravis & Eaglstein Although this rumour was unfounded, it is said to have kick- 2007). Meanwhile, cortisone was being hailed as a panacea for started the all-out quest for a large-scale synthetic route to the treating various diseases of unknown cause but with an active adrenal hormone, which at the time was given higher inflammatory basis. However, with high dosage and long- strategic priority than penicillin and anti-malarials (Quirke term usage, the remarkable therapeutic effects of cortisone 2005). Of the six biologically active steroids that had been were countered by undesirable side effects, such as excessive isolated from adrenal glands, Kendall’s compound A (11- salt and water retention, increased gastric acidity and dehydrocorticosterone) was initially targeted for synthesis psychosis. Considerable effort was therefore directed at because it possessed the simplest structure (Kendall 1964). chemical and microbiological syntheses of new cortisone Although synthetic ‘A’ proved to be active in animals, it had derivatives with lessened toxicity and improved efficacy no beneficial effects in patients with Addison’s disease. (Feiser & Feiser 1959). Progress was aided by the arrival of Therefore, attention turned to the closely related ‘E’ conformational analysis, which allowed molecular structures (cortisone), eventually leading to the historic 37-step and stereochemical confirmations to be assigned on the basis synthesis from desoxycholic acid published by Sarett (1946). of quantitative physiochemical parameters (Barton & By summer 1948, sufficient compound E was available for Cookson 1956). Milestones included the discovery that Kendall’s long-time collaborator at the Mayo Clinic, Philip whereas 9a-fluorination increased anti-inflammatory Showalter Hench, to test clinically. A pilot trial of compound potency, it also caused excessive protein loss, potassium loss, E on a patient with Addison’s disease was ‘encouraging’ sodium retention and oedema. On the other hand, (Kendall 1964). Then, on 21 September 1948, the first i.m. introduction of a 1,2 double bond in the A ring (to create injection of an aqueous suspension of compound E (100 mg) prednisone from cortisone and prednisolone
Recommended publications
  • Trials of Cortisone Analogues in the Treatment of Rheumatoid Arthritis
    Ann Rheum Dis: first published as 10.1136/ard.18.2.120 on 1 June 1959. Downloaded from Ann. rheum. Dis. (1959), 18, 120. TRIALS OF CORTISONE ANALOGUES IN THE TREATMENT OF RHEUMATOID ARTHRITIS BY H. W. FLADEE, G. R. NEWNS, W. D. SMITH, AND H. F. WEST Sheffield Centre for the Investigation and Treatment of Rheumatic Diseases In 1954 the first report appeared of a controlled rates and strengths of grip of the 21 patients from trial of aspirin versus cortisone in the treatment of this Centre who took part in the trial. Had a 1 to 5 early cases ofrheumatoid arthritis (Medical Research prednisone to cortisone dose been employed, the Council-Nuffield Foundation Joint Committee, therapeutic superiority of prednisone, of which 1954). The trial showed that, after treatment for we are now aware, would have been apparent. More a year, the group receiving cortisone (mean dose recently, fourteen patients from this trial who had 75 mg. daily) had fared no better than that receiving been kept on cortisone for a second year were only aspirin. Some of the patients had had radio- transferred to prednisolone. On this occasion the graphs taken of their hands and feet at the start dose ratio employed was 1 to 6 prednisolone to of the trial and at the end of the first year. Bone cortisone. By the end of 6 months their mean erosion was found to have advanced in both groups. erythrocyte sedimentation rate (Wintrobe) had The score for advance was slightly greater in the fallen from 24-6 to 15 mm./hr, and their mean aspirin group, but the difference was not statis- strength of grip had risen from 271 to 299 mm.
    [Show full text]
  • Cortisone Injections
    Pain & Rehab Medicine 920‐288‐8377/888‐965‐4380 Cortisone Injections Why are these procedures done? Cortisone is a treatment for inflammation. Most literature on painful conditions of the spine and joints suggest that inflammation can be a key contributor to the pain in addition to ligament, tendon and cartilage damage. It is very important to note that these injections/procedures are almost NEVER a cure for the problem. These procedures are used as a tool to advance your therapy and exercise program. When you find your therapy or exercise program too painful – cortisone injections can be of great value in lessening the inflammation/pain to allow for more effective therapeutic intervention. Possible side effects: Cortisone or Steroid Flare Reaction ‐ Sometimes people experience a delayed (within 24‐48 hours), temporary (lasting 24‐48 hours) increase in their pain. Icing can be helpful. You should not be concerned if you experience this side effect. It will not change the effectiveness of the shot. Elevated Blood Pressure ‐ Most commonly occurs in patients who are already hypertensive. This happens because of temporary fluid retention and may be accompanied by an increased swelling of the feet. This effect is temporary. Elevated Blood Sugar ‐ Most commonly seen in diabetic patients. Patients with diabetes should carefully monitor their blood sugar as cortisone can cause a temporary rise in glucose levels. If you take insulin you should be especially careful. Check your blood sugar often and adjust the insulin doses if necessary. Facial Flushing ‐ A flushing sensation and redness of the face. This reaction is more common in women and is seen in up to 15 percent of patients.
    [Show full text]
  • Determination of Steroid Hormones and Their Metabolite in Several
    G Model CHROMA-359178; No. of Pages 10 ARTICLE IN PRESS Journal of Chromatography A, xxx (2018) xxx–xxx Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma Determination of steroid hormones and their metabolite in several types of meat samples by ultra high performance liquid chromatography—Orbitrap high resolution mass spectrometry ∗ Marina López-García, Roberto Romero-González, Antonia Garrido Frenich Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E-04120, Almería, Spain a r t i c l e i n f o a b s t r a c t Article history: A new analytical method based on ultra-high performance liquid chromatography (UHPLC) coupled Received 8 November 2017 to Orbitrap high resolution mass spectrometry (Orbitrap-HRMS) has been developed for the deter- Received in revised form 23 January 2018 mination of steroid hormones (hydrocortisone, cortisone, progesterone, prednisone, prednisolone, Accepted 28 January 2018 testosterone, melengesterol acetate, hydrocortisone-21-acetate, cortisone-21-acetate, testosterone Available online xxx ␣ propionate, 17 -methyltestosterone, 6␣-methylprednisolone and medroxyprogesterone) and their metabolite (17␣-hydroxyprogesterone) in three meat samples (chicken, pork and beef). Two differ- Keywords: ent extraction approaches were tested (QuEChERS “quick, easy, cheap, effective, rugged and safe” and Meat Hormones “dilute and shoot”), observing that the QuEChERS method provided the best results in terms of recov- Steroids ery. A clean-up step was applied comparing several sorbents, obtaining the best results when florisil Metabolite and aluminum oxide were used.
    [Show full text]
  • Steroid Use in Prednisone Allergy Abby Shuck, Pharmd Candidate
    Steroid Use in Prednisone Allergy Abby Shuck, PharmD candidate 2015 University of Findlay If a patient has an allergy to prednisone and methylprednisolone, what (if any) other corticosteroid can the patient use to avoid an allergic reaction? Corticosteroids very rarely cause allergic reactions in patients that receive them. Since corticosteroids are typically used to treat severe allergic reactions and anaphylaxis, it seems unlikely that these drugs could actually induce an allergic reaction of their own. However, between 0.5-5% of people have reported any sort of reaction to a corticosteroid that they have received.1 Corticosteroids can cause anything from minor skin irritations to full blown anaphylactic shock. Worsening of allergic symptoms during corticosteroid treatment may not always mean that the patient has failed treatment, although it may appear to be so.2,3 There are essentially four classes of corticosteroids: Class A, hydrocortisone-type, Class B, triamcinolone acetonide type, Class C, betamethasone type, and Class D, hydrocortisone-17-butyrate and clobetasone-17-butyrate type. Major* corticosteroids in Class A include cortisone, hydrocortisone, methylprednisolone, prednisolone, and prednisone. Major* corticosteroids in Class B include budesonide, fluocinolone, and triamcinolone. Major* corticosteroids in Class C include beclomethasone and dexamethasone. Finally, major* corticosteroids in Class D include betamethasone, fluticasone, and mometasone.4,5 Class D was later subdivided into Class D1 and D2 depending on the presence or 5,6 absence of a C16 methyl substitution and/or halogenation on C9 of the steroid B-ring. It is often hard to determine what exactly a patient is allergic to if they experience a reaction to a corticosteroid.
    [Show full text]
  • Endogenous Steroid Hormones in Hair: Investigations on Different Hair Types, Pigmentation Effects and Correlation to Nails
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Endogenous steroid hormones in hair: investigations on different hair types, pigmentation effects and correlation to nails Voegel, Clarissa D ; Hofmann, Mathias ; Kraemer, Thomas ; Baumgartner, Markus R ; Binz, Tina M Abstract: Steroid hormone analysis is widely used in health- and stress-related research to get insights into various diseases and the adaption to stress. Hair analysis has been used as a tool for the long-term monitoring of these steroid hormones. In this study, a liquid chromatography-tandem mass spectrome- try method was developed and validated for the simultaneous identification and quantification of seven steroid hormones (cortisone, cortisol, 11-deoxycortisol, androstenedione, 11-deoxycorticosterone, testos- terone, progesterone) in hair. Cortisol, cortisone, androstenedione, testosterone and progesterone were detected and quantified in authentic hair samples of different individuals. Significantly higher concen- trations for body hair were found for cortisone and testosterone compared to scalp hair. Furthermore, missing correlations for the majority of steroids between scalp and body hair indicate that body hair is not really suitable as alternative when scalp hair is not available. The influence of hair pigmentation was analyzed by comparing pigmented to non-pigmented hair of grey-haired individuals. The results showed no differences for cortisol, cortisone, androstenedione, testosterone and progesterone concentrations (p> 0.05) implying that hair pigmentation has not a strong effect on steroid hormone concentrations. Cor- relations between hair and nail steroid levels were also studied. Higher concentrations of cortisol and cortisone in hair were found compared to nails (p< 0.0001).
    [Show full text]
  • Quantification of Hair Corticosterone, DHEA and Testosterone As
    animals Article Quantification of Hair Corticosterone, DHEA and Testosterone as a Potential Tool for Welfare Assessment in Male Laboratory Mice Alberto Elmi 1 , Viola Galligioni 2, Nadia Govoni 1 , Martina Bertocchi 1 , Camilla Aniballi 1 , Maria Laura Bacci 1 , José M. Sánchez-Morgado 2 and Domenico Ventrella 1,* 1 Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; [email protected] (A.E.); [email protected] (N.G.); [email protected] (M.B.); [email protected] (C.A.); [email protected] (M.L.B.) 2 Comparative Medicine Unit, Trinity College Dublin, D02 Dublin, Ireland; [email protected] (V.G.); [email protected] (J.M.S.-M.) * Correspondence: [email protected]; Tel.: +39-051-2097-926 Received: 11 November 2020; Accepted: 14 December 2020; Published: 16 December 2020 Simple Summary: Mice is the most used species in the biomedical research laboratory setting. Scientists are constantly striving to find new tools to assess their welfare, in order to ameliorate husbandry conditions, leading to a better life and scientific data. Steroid hormones can provide information regarding different behavioral tracts of laboratory animals but their quantification often require stressful sampling procedures. Hair represents a good, less invasive, alternative in such scenario and is also indicative of longer timespan due to hormones’ accumulation. The aim of the work was to quantify steroid hormones in the hair of male laboratory mice and to look for differences imputable to age and housing conditions (pairs VS groups). Age influenced all analysed hormones by increasing testosterone and dehydroepiandrosterone (DHEA) levels and decreasing corticosterone.
    [Show full text]
  • LCMS Saliva Steroid & Steroid Synthesis Inhibitor Profile
    PROVIDER DATA SHEET LCMS Saliva Steroid & Steroid Synthesis Inhibitor Profile ZRT Laboratory now offers a comprehensive LC-MS/MS saliva assay that measures the levels of 18 endogenous steroid hormones (see Steroid Hormone Cascade Tests Included diagram on the next page) including estrogens, progestogens, androgens, Estrogens glucocorticoids, and mineralocorticoids. In addition to endogenous hormones Estradiol (E2), Estriol (E3), Estrone (E1), the new assay quantifies the level of melatonin and the synthetic estrogen ethinyl Ethinyl Estradiol (EE) estradiol, present in most birth control formulations, as well as several synthetic Progestogen Precursors and Metabolites aromatase inhibitors (anastrozole and letrozole) and the 5α-reductase inhibitor Pregnenolone Sulfate (PregS), Progesterone (Pg), finasteride. Allopregnenolone (AlloP), 17-OH Progesterone (17OHPg) The LC-MS/MS assay expands beyond the 5-steroid panel of parent hormones Androgen Precursors and Metabolites (estradiol, progesterone, testosterone, DHEAS, and cortisol) currently tested Androstenedione (Adione), Testosterone (T), by immunoassay (IA) at ZRT Laboratory. Testing the levels of both upstream Dihydrotestosterone (DHT), DHEA (D), precursors and downstream metabolites of these parent active steroids, listed DHEA-S (DS), 7-Keto DHEA (7keto) above and shown in the diagram on the next page, will help determine which steroid Glucocorticoid Precursors and Metabolites synthesis enzymes are low, overactive, blocked by natural or pharmaceutical 11-Deoxycortisol (11DC) Cortisol
    [Show full text]
  • Progesterone Using ALZET Osmotic Pumps
    ALZET® Bibliography References on the Administration of Progesterone Using ALZET Osmotic Pumps Q8558: V. Joseph, et al. Progesterone decreases apnoea and reduces oxidative stress induced by chronic intermittent hypoxia in ovariectomized female rats. Exp Physiol 2020;105(6):1025-1034 Agents: Progesterone Vehicle: Cyclodextrin, 2-ß-Hydroxypropl-; Route: SC; Species: Rat; Pump: 2ML4; Duration: 28 days; ALZET Comments: Dose (4 mg/kg/day); Controls received mp w/ vehicle; animal info (Sprague-Dawley female rats (220-250g/57-70 days old)); post op. care (buprenorphine); Blood pressure measured via tail cuff method;93.3 mmHg - 105.2 mmHg;Progesterone aka prog; dependence; Q6232: S. F. Rosen, et al. T-Cell Mediation of Pregnancy Analgesia Affecting Chronic Pain in Mice. J Neurosci 2017;37(41):9819-9827 ALZET Comments: Estradiol, 17b-; Progesterone sulfate; SC; Mice; 2002; 14 days; Dose (17b-estradiol : 0.1 mg/kg/d, progesterone sulfate: 0.25 mg/kg/d, 0.1 mg/kg/d estradiol + 0.25 mg/kg/d progesterone); Controls received mp w/ vehicle; animal info (7-12 week old female C57BL/6J mice); replacement therapy (estradiol, ovariectomy); Therapeutic indication. Q6066: D. J. Morris, et al. Glucocorticoids and gut bacteria: "The GALF Hypothesis" in the metagenomic era. Steroids 2017;125(1-13 ALZET Comments: Chenodeoxycholic acid, progesterone, 11b-hydroxy-, corticosterone, deoxy-, corticosterone, 3α,5α-TH-, progesterone, 3α,5α-TH-11β-hydroxy-; SC; Rat; steroidal derivatives of corticosterone; Review presents the role of gut microbial metabolism of endogenous adrenocorticosteroids as a contributing factor in the etiology of essential hypertension. Q6204: S. McIlvride, et al. A progesterone-brown fat axis is involved in regulating fetal growth.
    [Show full text]
  • Are There Any Differences Between Stress Hormone Levels in Non-Stress Conditions and in Potentional Stress Overload (Heart Catheterisation) in Sows?
    Title: Are there any differences between stress hormone levels in non-stress conditions and in potentional stress overload (heart catheterisation) in sows? Short title: The stress hormone levels in young sows undergoing elective heart intervention. Skarlandtová H. 1, Bi číková M. 2, Neužil P. 3, Ml ček M. 1, Hrachovina V. 1, Svoboda T. 1, Medová E. 1, Kudli čka J. 1, Dohnalová A. 1, Havránek Š. 4, Kazihnítková H. 2, Má čová L. 2, Va řejková E. 1, Kittnar O. 1 1Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague 2, Czech Republic 2 Institute of Endocrinology, Národní 8, 116 94, Prague 1, Czech Republic 3 Cardiology Department, Na Homolce Hospital, Prague, Czech Republic 4 2nd Department of Internal Medicine, Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague. Correspondence author: Kittnar O., Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Praha 2, Czech Republic, e-mail: [email protected] , telephone number: 224 968 430, fax number: 224 918 816 Summary In order to study a possible effect of mini-invasive heart intervention on a response of hypothalamo-pituitary-adrenal stress axis, we analyzed four stress markers (cortisol, cortisone, DHEA and DHEAS) in 25 sows using minimally invasive heart catheterisation as the stress factor. The marker levels were assessed in four periods of the experiment, (1) the baseline level on the day before intervention, (2) after the introduction of anaesthesia, (3) after conducting tissue stimulation or ablation, and (4) after the end of the catheterisation.
    [Show full text]
  • Cortisone Injections EXPERT CONSULTANT: Matthew J
    SPORTS TIP Cortisone Injections EXPERT CONSULTANT: Matthew J. Matava, MD What is cortisone? treatment as they may turn off the body’s do not last long and resolve with icing Injectable corticosteroid medications, “alarm system,” ultimately leading to after 12 to 48 hours. a more significant injury later on. commonly called “cortisone,” have been Whitening of the skin around the used by orthopaedic professionals since injection site is also a common side Who shouldn’t have a cortisone the early 1950s for a variety of conditions, effect in dark-skinned individuals. injection? including tendonitis, arthritis, tennis This discoloration is not harmful. elbow, and carpal tunnel syndrome. There are very few contraindications in Cortisone is naturally produced in the the use of cortisone injections. However, Additional side effects include softening body through the adrenal gland and the following conditions should be fully of cartilage and weakening of tendons at released when the body is under stress. discussed with an orthopaedic professional the injection site. This usually occurs in Injectable cortisone is synthetically before seeking a cortisone injection: patients who receive shots on a weekly- to-monthly basis, during a period of produced and is similar to the body’s Ⅲ Infection of a joint (septic arthritis) own product. By minimizing inflammation, months to years. Most surgeons currently Ⅲ Skin infection at the site injectable cortisone can provide significant recommend having injections at least of the injection pain relief and allow for an earlier three months apart and avoiding repeat injections within a short-time period. return to activity, whether to complete Ⅲ Allergic reaction to previous a weekend home repair effort or to win cortisone injections Diabetic patients may experience a football game.
    [Show full text]
  • A-1-Antitrypsin Deficiency: Phenotype Vs. Genotype
    Impact of Tandem Mass Spectrometry in Clinical Diagnostics R.J. Singh, Ph.D. Mayo Clinic Definition Diagnosis or Di`ag`nos´tics • Identification of a disease, disorder, or syndrome through a method of consistent and accurate analysis. Laboratory Automation Picture of the UVA lab here Methodologies for Analysis RIA GC-FID CLIA LC-UV/EC ELISA GC-MS FIA LC-MS ICMA LC-MS/MS Biosynthesis of Steroids Cholesterol Pregnenolone 17- OH Pregnenolone DHEA ---------------------3βSDH -------------------------------------------------------- 17,20 desmolase 17 OH’ase Progesterone 17-OH Progesterone Androstenedione 21 OH'ase 17b SDH ---------------------------------------------- Aromatase ------ 11-Deoxycorticosterone 11-deoxycortisol Testosterone 11 OH'ase Aromatase ---------------------------------------------- ------ Estrone Corticosterone Cortisol Estradiol 17b SDH 18 OH'ase ---------------------- Cortisone --- Aldosterone Cushing’s Syndrome Introduction Hypothalamus CRH Pituitary Cortisol ACTH - + Adrenal Gland Cortisol ACTH-Dependent Cushing’s Syndrome Cushing’s Disease Ectopic ACTH Syndrome ACTH-Independent Cushing’s Syndrome Adrenal adenoma Adrenal carcinoma Adrenal Gland Adrenaline Adrenal Cortex (outer) Adrenal Medulla (center) http://www.pathology.vcu.edu/education/endocrine/endocrine/adrenal/micro/adrad1x.gif Obesity Trends* Among U.S. Adults BRFSS, 1990, 1998, 2006 (*BMI ≥30, or about 30 lbs. overweight for 5’4” person) 1990 1998 2006 No Data <10% 10%–14% 15%–19% 20%–24% 25%–29% ≥30% Biosynthesis of Steroids Cholesterol Pregnenolone 17- OH
    [Show full text]
  • Plasma Levels of Aldosterone, Corticosterone, 1 1
    Pediat. Res. 14: 39-46 (1980) aldosterone glucocorticoids corticosterone 17-hydroxyprogesterone cortisol mineralocorticoids cortisone progesterone 11-deoxycorticosterone progestins Plasma Levels of Aldosterone, Corticosterone, 11-Deoxycorticosterone, Progesterone, 17=Hydroxyprogesterone,Cortisol, and Cortisone During Infancy and Childhood WOLFGANG G. SIPPELL, HELMUTH G. D~RR,FRANK BIDLINGMAIER, AND DIETRICH KNORR Division of Pediatric Endocrinology, Department of Pediatrics, Dr. von Haunersches Kinderspiral, University of Munich School of Medicine, Munich, West Germany Summary other mineralocorticoids like DOC, and glucocorticoids like B and E exhibit similar patterns in different p&iatric age groups or not. Plasma aldosterone (A), corticosterone (B), deoxycorticoster- ~~~~~~l~published data on the progestins P and 17-0~pwith One progesterone ('1, 17-h~drox~~rogesterone(17-OHP), one exception (23) only covered either infancy (17) or puberty (4, (F), and cortisone (E) were measured simultaneously by 33, 34). Yet, a detailed evaluation of adrenocortical function is radiOimmunOassa~sin plasma samples obtained frequently needed in infants and children presenting with such from 174 infants and chi'dren between hr and yr of various symptoms as salt loss, virilization, staunted or excessive age. The levels (dml) 2-5 growth, obesity, premature pubarche, hypertension, etc., for which (A)14.1 53.0 ('I1 and '.' (''-OH') dropped appropriate, age-matched control values of adrenal steroids are of during infancy reaching prepubertal levels between 3
    [Show full text]