ESSOAr | https://doi.org/10.1002/essoar.10502463.2 | CC_BY_NC_ND_4.0 | First posted online: Mon, 8 Feb 2021 12:42:39 | This content has not been peer reviewed. Geologic and Structural Evolution of the NE Lau Basin, Tonga: Morphotectonic Analysis and Classification of Structures using Shallow Seismicity 1 Melissa O. Anderson1†, Chantal Norris-Julseth1†, Kenneth H. Rubin2, Karsten Haase3, Mark D. 2 Hannington4,5, Alan T. Baxter4, and Margaret S. Stewart6 3 1Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario, 4 M5S 3B1, Canada 5 2Department of Geology and Geophysics, SOEST, University of Hawaii, 1680 East-West Road, 6 Honolulu, Hawaii, 96822, USA 7 3GeoZentrum Nordbayern, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 5, 8 D-91054 Erlangen, Germany 9 4Department of Earth Sciences, University of Ottawa, 25 Templeton, Ottawa, Ontario, K1N 6N5, 10 Canada 11 5GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany 12 6Department of Earth and Environmental Sciences, Mount Royal University, 4825 Mount Royal Gate 13 SW, Calgary, Alberta, T3E 6K5, Canad 14 * Correspondence: 15 Melissa O. Anderson:
[email protected] 16 Keywords: NE Lau Basin, backarc basin, geologic mapping, morphotectonic, submarine volcanism, 17 shallow seismicity, fault kinematics, Riedel megashear, hydrothermal systems, 18 Abstract 19 The transition from subduction to transform motion along horizontal terminations of trenches is 20 associated with tearing of the subducting slab and strike-slip tectonics in the overriding plate. One 21 prominent example is the northern Tonga subduction zone, where abundant strike-slip faulting in the 22 NE Lau back-arc basin is associated with transform motion along the northern plate boundary and 23 asymmetric slab rollback.