Buildroot: What’S New?

Total Page:16

File Type:pdf, Size:1020Kb

Buildroot: What’S New? Embedded Linux Conference 2018 Buildroot: what's new? Thomas Petazzoni [email protected] c Copyright 2004-2018, Bootlin. Creative Commons BY-SA 3.0 license. Formerly Free Electrons Corrections, suggestions, contributions and translations are welcome! - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/31 Thomas Petazzoni I CTO and Embedded Linux engineer at Free Electrons ! Bootlin I Embedded Linux specialists. I Development, consulting and training. I https://bootlin.com I Contributions I Kernel support for the Marvell Armada ARM SoCs from Marvell I Major contributor to Buildroot, an open-source, simple and fast embedded Linux build system I Toulouse, south west of France I Windsurfing, snowboarding - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/31 I Who is already using Buildroot ? I Who is using OpenEmbedded / Yocto Project ? I Who is using OpenWRT / LEDE ? I Who is using another build system ? Poll time I Who already knows about Buildroot ? - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/31 I Who is using OpenEmbedded / Yocto Project ? I Who is using OpenWRT / LEDE ? I Who is using another build system ? Poll time I Who already knows about Buildroot ? I Who is already using Buildroot ? - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/31 I Who is using OpenWRT / LEDE ? I Who is using another build system ? Poll time I Who already knows about Buildroot ? I Who is already using Buildroot ? I Who is using OpenEmbedded / Yocto Project ? - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/31 I Who is using another build system ? Poll time I Who already knows about Buildroot ? I Who is already using Buildroot ? I Who is using OpenEmbedded / Yocto Project ? I Who is using OpenWRT / LEDE ? - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/31 Poll time I Who already knows about Buildroot ? I Who is already using Buildroot ? I Who is using OpenEmbedded / Yocto Project ? I Who is using OpenWRT / LEDE ? I Who is using another build system ? - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/31 Buildroot at a glance I Is an embedded Linux build system, builds from source: I cross-compilation toolchain I root filesystem with many libraries/applications, cross-built I kernel and bootloader images I Fast, simple root filesystem in minutes I Easy to use and understand: kconfig and make I Small root filesystem, default 2 MB I More than 2300 packages available I Generates filesystem images, not a distribution I Vendor neutral I Active community, stable releases every 3 months I Started in 2001, oldest still maintained build system I http://buildroot.org - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/31 What's new? I Last What's new talk at the Embedded Linux Conference 2014, i.e 4 years ago I Lots of things have changed and improved in Buildroot since then, time for a new What's new talk! I Main topics discussed I Project activity I Release schedule and LTS I Architecture support I Toolchain support I Infrastructure improvements I Testing improvements I Misc - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/31 Project activity: per commits 2 ;000 1 ;500 1 ;000 Number of commits500 per release - Kernel, drivers and embedded Linux - Development, consulting,0 training and support - 2012.05 2012.08 2012.11 2013.02 2013.05 2013.08 2013.11 2014.02 2014.05 2014.08 2014.11 2015.02 2015.05 2015.08 2015.11 https://bootlin.com 2016.02 2016.05 2016.08 2016.11 2017.02 2017.05 2017.08 2017.11 2018.02 6/31 Project activity: contributors 100 50 Number of contributors per release - Kernel, drivers and embedded Linux - Development, consulting,0 training and support - 2012.05 2012.08 2012.11 2013.02 2013.05 2013.08 2013.11 2014.02 2014.05 2014.08 2014.11 2015.02 2015.05 2015.08 https://bootlin.com 2015.11 2016.02 2016.05 2016.08 2016.11 2017.02 2017.05 2017.08 2017.11 2018.02 7/31 Project activity: mailing list activity 4;000 3;000 2;000 1;000 E-mails per month 0 2012.January 2013.January 2014.January 2015.January 2016.January 2017.January 2018.January - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/31 Project activity: packages 2 ;000 1 Number of packages;000 - Kernel, drivers and embedded Linux - Development, consulting,0 training and support - 2012.05 2012.08 2012.11 2013.02 2013.05 2013.08 2013.11 2014.02 2014.05 2014.08 2014.11 2015.02 2015.05 2015.08 2015.11 https://bootlin.com 2016.02 2016.05 2016.08 2016.11 2017.02 2017.05 2017.08 2017.11 2018.02 9/31 I Until 2017.02 I Point releases for the latest stable, but only until the next stable release I Only option to get updates is to migrate to the next release I Since 2017.02, one LTS release per year I Every YYYY.02 release will be maintained for one year, with security, build and bug fixes I 2017.02 had 10 point releases, from 2017.02.1 to 2017.02.10, 778 commits I 2018.02 published on March 4th 2018, new LTS release Release schedule and LTS I Since 2009, releases every three months: YYYY.02, YYYY.05, YYYY.08, YYYY.11 I Never skipped a release or missed a release date! - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/31 I Since 2017.02, one LTS release per year I Every YYYY.02 release will be maintained for one year, with security, build and bug fixes I 2017.02 had 10 point releases, from 2017.02.1 to 2017.02.10, 778 commits I 2018.02 published on March 4th 2018, new LTS release Release schedule and LTS I Since 2009, releases every three months: YYYY.02, YYYY.05, YYYY.08, YYYY.11 I Never skipped a release or missed a release date! I Until 2017.02 I Point releases for the latest stable, but only until the next stable release I Only option to get updates is to migrate to the next release - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/31 Release schedule and LTS I Since 2009, releases every three months: YYYY.02, YYYY.05, YYYY.08, YYYY.11 I Never skipped a release or missed a release date! I Until 2017.02 I Point releases for the latest stable, but only until the next stable release I Only option to get updates is to migrate to the next release I Since 2017.02, one LTS release per year I Every YYYY.02 release will be maintained for one year, with security, build and bug fixes I 2017.02 had 10 point releases, from 2017.02.1 to 2017.02.10, 778 commits I 2018.02 published on March 4th 2018, new LTS release - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/31 Maintenance and physical meetings I Used to have a single committer/project maintainer: Peter Korsgaard I Two additional committers have been appointed in recent years: I Thomas Petazzoni (i.e, me) I Arnout Vandecappelle I Physical meetings I One meeting before ELCE, I One meeting after FOSDEM, Brussels I One more private hackaton for the core team in the summer - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/31 I ARC, ARM(eb,nommu), ARM64(eb), Blackfin, C-Sky, m68k, Microblaze(el), mips(64)(el), nios2, OpenRISC, PowerPC(64)(le), SuperH, Sparc(64), x86( 64), Xtensa I ARM Cortex M3/M4 noMMU support I Merge of ARM/ARM64 options, to select ARM64 cores I PowerPC64 little endian and big endian support, contributions from IBM I MIPS improvements: MIPS32r6 and MIPS64r6 support, MIPS core selection, NaN/FP32 selection, contributions from Imagination Technologies I OpenRISC, C-Sky, Sparc64 support I Re-enabling of m68k both Coldfire (noMMU) and 68k (MMU) I Blackfin and Microblaze improved with uClibc-ng support I SH64 and AVR32 support removed Architectures I Probably the build system with the largest number of architectures supported - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/31 I ARM Cortex M3/M4 noMMU support I Merge of ARM/ARM64 options, to select ARM64 cores I PowerPC64 little endian and big endian support, contributions from IBM I MIPS improvements: MIPS32r6 and MIPS64r6 support, MIPS core selection, NaN/FP32 selection, contributions from Imagination Technologies I OpenRISC, C-Sky, Sparc64 support I Re-enabling of m68k both Coldfire (noMMU) and 68k (MMU) I Blackfin and Microblaze improved with uClibc-ng support I SH64 and AVR32 support removed Architectures I Probably the build system with the largest number of architectures supported I ARC, ARM(eb,nommu), ARM64(eb), Blackfin, C-Sky, m68k, Microblaze(el), mips(64)(el), nios2, OpenRISC, PowerPC(64)(le), SuperH, Sparc(64), x86( 64), Xtensa - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/31 Architectures I Probably the build system with the largest number of architectures supported I ARC, ARM(eb,nommu), ARM64(eb), Blackfin, C-Sky, m68k, Microblaze(el), mips(64)(el), nios2, OpenRISC, PowerPC(64)(le), SuperH, Sparc(64), x86( 64), Xtensa I ARM Cortex M3/M4 noMMU support I Merge of ARM/ARM64 options, to select ARM64 cores I PowerPC64 little endian and big endian support, contributions from IBM I MIPS improvements: MIPS32r6 and MIPS64r6 support, MIPS core selection, NaN/FP32 selection, contributions from Imagination Technologies I OpenRISC, C-Sky, Sparc64 support I Re-enabling of m68k both Coldfire (noMMU) and 68k (MMU) I Blackfin and Microblaze improved with uClibc-ng support I SH64 and AVR32 support removed - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/31 I Internal toolchain improvements I Support for musl C library added I Moved from uClibc to uClibc-ng I Regular updates: gcc up to 7.x (default is 6.x), binutils 2.29 (default 2.28), gdb 8.0 (default 7.12), glibc 2.27, uClibc-ng 1.0.28, musl 1.1.19.
Recommended publications
  • Also Includes Slides and Contents From
    The Compilation Toolchain Cross-Compilation for Embedded Systems Prof. Andrea Marongiu ([email protected]) Toolchain The toolchain is a set of development tools used in association with source code or binaries generated from the source code • Enables development in a programming language (e.g., C/C++) • It is used for a lot of operations such as a) Compilation b) Preparing Libraries Most common toolchain is the c) Reading a binary file (or part of it) GNU toolchain which is part of d) Debugging the GNU project • Normally it contains a) Compiler : Generate object files from source code files b) Linker: Link object files together to build a binary file c) Library Archiver: To group a set of object files into a library file d) Debugger: To debug the binary file while running e) And other tools The GNU Toolchain GNU (GNU’s Not Unix) The GNU toolchain has played a vital role in the development of the Linux kernel, BSD, and software for embedded systems. The GNU project produced a set of programming tools. Parts of the toolchain we will use are: -gcc: (GNU Compiler Collection): suite of compilers for many programming languages -binutils: Suite of tools including linker (ld), assembler (gas) -gdb: Code debugging tool -libc: Subset of standard C library (assuming a C compiler). -bash: free Unix shell (Bourne-again shell). Default shell on GNU/Linux systems and Mac OSX. Also ported to Microsoft Windows. -make: automation tool for compilation and build Program development tools The process of converting source code to an executable binary image requires several steps, each with its own tool.
    [Show full text]
  • FPGA BASED RECONFIGURABLE BODY AREA NETWORK USING Nios II and Uclinux
    FPGA BASED RECONFIGURABLE BODY AREA NETWORK USING Nios II AND uClinux A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Electrical and Computer Engineering University of Saskatchewan by Anthony Voykin Saskatoon, Saskatchewan, Canada c Copyright Anthony Voykin, April 2013. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, it is agreed that the Libraries of this University may make it freely available for inspection. Permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professors who supervised this thesis work or, in their absence, by the Head of the Department of Electrical and Computer Engineering or the Dean of the College of Graduate Studies and Research at the University of Saskatchewan. Any copying, publication, or use of this thesis, or parts thereof, for financial gain without the written permission of the author is strictly prohibited. Proper recognition shall be given to the author and to the University of Saskatchewan in any scholarly use which may be made of any material in this thesis. Request for permission to copy or to make any other use of material in this thesis in whole or in part should be addressed to: Head of the Department of Electrical and Computer Engineering 57 Campus Drive University of Saskatchewan Saskatoon, Saskatchewan, Canada S7N 5A9 i Acknowledgments I would like to thank my advisors Professor Ron Bolton and Professor Francis Bui for providing me with guidance and support necessary to complete my thesis work.
    [Show full text]
  • Embedded System Setting up Development Environment
    Embedded System Setting up Development Environment Tool chain installation GCC tool chain includes gcc compiler,assembler, linker, and other related utilities. (root@host)#rpm –ivh armtools-2.95.3- 5.i386.rpm Add /usr/local/gnu-2.95.3/bin to the searching path. (root@host)# export PATH=/usr/local/gnu- 2.95.3/bin:$PATH Setting up Development Environment Installing uClibc (root@host)#rpm –ivh uClibc-0.9.5- 1.i386.rpm The uClibc will be installed in /usr/local/uClibc-0.9.5 Building busybox BusyBox: The Swiss Army Knife of Embedded Linux Official site: http://busybox.net Install the BusyBox Configure the function of busybox Modify Makefile make Configure the function of busybox Config.h // This file defines the feature set to be compiled into busybox. // When you turn things off here, they won’t be compiled in at all. // //// This file is parsed by sed. You MUST use single line comments. // i.e., //#define BB_BLAH // // BusyBox Applications //#define BB_ADJTIMEX //#define BB_AR #define BB_ASH … # If you are running a cross compiler, you may want to set this # to something more interesting, like “powerpc-linux-“. CROSS = arm-elf- CC = $(CROSS)gcc … CROSS_CFLAGS+= -nostdinc –I$(LIBCDIR)/include –I$(GCCINCDIR) #Add below LIBCDIR=/usr/local/uClibc-0.9.5/linux-2.0.x GCCINCDIR=/usr/local/gnu-2.95.3/lib/gcc-lib/arm-elf/2.95/include Modify Makefile # If you are running a cross compiler, you may want to set this # to something more interesting, like “powerpc-linux-“. CROSS = arm-elf- CC = $(CROSS)gcc … CROSS_CFLAGS+= -nostdinc –I$(LIBCDIR)/include
    [Show full text]
  • Operating Systems and Applications for Embedded Systems >>> Toolchains
    >>> Operating Systems And Applications For Embedded Systems >>> Toolchains Name: Mariusz Naumowicz Date: 31 sierpnia 2018 [~]$ _ [1/19] >>> Plan 1. Toolchain Toolchain Main component of GNU toolchain C library Finding a toolchain 2. crosstool-NG crosstool-NG Installing Anatomy of a toolchain Information about cross-compiler Configruation Most interesting features Sysroot Other tools POSIX functions AP [~]$ _ [2/19] >>> Toolchain A toolchain is the set of tools that compiles source code into executables that can run on your target device, and includes a compiler, a linker, and run-time libraries. [1. Toolchain]$ _ [3/19] >>> Main component of GNU toolchain * Binutils: A set of binary utilities including the assembler, and the linker, ld. It is available at http://www.gnu.org/software/binutils/. * GNU Compiler Collection (GCC): These are the compilers for C and other languages which, depending on the version of GCC, include C++, Objective-C, Objective-C++, Java, Fortran, Ada, and Go. They all use a common back-end which produces assembler code which is fed to the GNU assembler. It is available at http://gcc.gnu.org/. * C library: A standardized API based on the POSIX specification which is the principle interface to the operating system kernel from applications. There are several C libraries to consider, see the following section. [1. Toolchain]$ _ [4/19] >>> C library * glibc: Available at http://www.gnu.org/software/libc. It is the standard GNU C library. It is big and, until recently, not very configurable, but it is the most complete implementation of the POSIX API. * eglibc: Available at http://www.eglibc.org/home.
    [Show full text]
  • A Review on Elliptic Curve Cryptography for Embedded Systems
    International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 3, June 2011 A REVIEW ON ELLIPTIC CURVE CRYPTOGRAPHY FOR EMBEDDED SYSTEMS Rahat Afreen 1 and S.C. Mehrotra 2 1Tom Patrick Institute of Computer & I.T, Dr. Rafiq Zakaria Campus, Rauza Bagh, Aurangabad. (Maharashtra) INDIA [email protected] 2Department of C.S. & I.T., Dr. B.A.M. University, Aurangabad. (Maharashtra) INDIA [email protected] ABSTRACT Importance of Elliptic Curves in Cryptography was independently proposed by Neal Koblitz and Victor Miller in 1985.Since then, Elliptic curve cryptography or ECC has evolved as a vast field for public key cryptography (PKC) systems. In PKC system, we use separate keys to encode and decode the data. Since one of the keys is distributed publicly in PKC systems, the strength of security depends on large key size. The mathematical problems of prime factorization and discrete logarithm are previously used in PKC systems. ECC has proved to provide same level of security with relatively small key sizes. The research in the field of ECC is mostly focused on its implementation on application specific systems. Such systems have restricted resources like storage, processing speed and domain specific CPU architecture. KEYWORDS Elliptic curve cryptography Public Key Cryptography, embedded systems, Elliptic Curve Digital Signature Algorithm ( ECDSA), Elliptic Curve Diffie Hellman Key Exchange (ECDH) 1. INTRODUCTION The changing global scenario shows an elegant merging of computing and communication in such a way that computers with wired communication are being rapidly replaced to smaller handheld embedded computers using wireless communication in almost every field. This has increased data privacy and security requirements.
    [Show full text]
  • Porting Musl to the M3 Microkernel TU Dresden
    Porting Musl to the M3 microkernel TU Dresden Sherif Abdalazim, Nils Asmussen May 8, 2018 Contents 1 Abstract 2 2 Introduction 3 2.1 Background.............................. 3 2.2 M3................................... 4 3 Picking a C library 5 3.1 C libraries design factors . 5 3.2 Alternative C libraries . 5 4 Porting Musl 7 4.1 M3andMuslbuildsystems ..................... 7 4.1.1 Scons ............................. 7 4.1.2 GNUAutotools........................ 7 4.1.3 Integrating Autotools with Scons . 8 4.2 Repositoryconfiguration. 8 4.3 Compilation.............................. 8 4.4 Testing ................................ 9 4.4.1 Syscalls ............................ 9 5 Evaluation 10 5.1 PortingBusyboxcoreutils . 10 6 Conclusion 12 1 Chapter 1 Abstract Today’s processing workloads require the usage of heterogeneous multiproces- sors to utilize the benefits of specialized processors and accelerators. This has, in turn, motivated new Operating System (OS) designs to manage these het- erogeneous processors and accelerators systematically. M3 [9] is an OS following the microkernel approach. M3 uses a hardware/- software co-design to exploit the heterogeneous systems in a seamless and effi- cient form. It achieves that by abstracting the heterogeneity of the cores via a Data Transfer Unit (DTU). The DTU abstracts the heterogeneity of the cores and accelerators so that they can communicate systematically. I have been working to enhance the programming environment in M3 by porting a C library to M3. I have evaluated different C library implementations like the GNU C Library (glibc), Musl, and uClibc. I decided to port Musl as it has a relatively small code base with fewer configurations. It is simpler to port, and it started to gain more ground in embedded systems which are also a perfect match for M3 applications.
    [Show full text]
  • Training Embedded Linux with Ac6 System Workbench: Implementing Linux on Embedded Systems - Operating Systems: Linux
    Training Embedded Linux with Ac6 System Workbench: Implementing Linux on Embedded Systems - Operating Systems: Linux D1S - Embedded Linux with Ac6 System Workbench Implementing Linux on Embedded Systems Objectives Understanding the architecture of the Linux system Learn how to install Linux on your hardware and create a BSP Explore the Linux system architecture Booting Linux Initializing the system Install existing packages on the target Learn how to install Linux on flash chips Labs are conducted on target boards, that can be: Dual Cortex/A7-based "STM32MP15-DISCO" boards from STMicroelectronics. Quad Cortex/A9-based "SabreLite" boards from NXP. Quad Cortex/A53-based "imx8q-evk" boards from NXP. We use a recent (4.x) linux kernel, as supported by the chip supplier. All labs are conducted using the System Workbench for Linux IDE. Course environment Printed course material (in English) One Linux PC for two trainees. One target platform for two trainees A version of “Ac6 System Workbench for Linux – Basic Edition” is provided free of charge to each trainee Prerequisite Good C programming skills Knowledge of Linux user programming (see our D0 - Linux User Mode Programming course) Preferably knowledge of Linux kernel and driver programming (see our D3 - Linux Drivers course) D1S - Embedded Linux with Ac6 System Workbench 09/28/21 Plan First Day Introduction to Linux Linux history and Version management Linux system architecture Processes and MMU System calls Shared libraries Linux components Toolchain Bootloader Kernel Root file system Linux
    [Show full text]
  • Embedded Linux Training
    Free Electrons Embedded Linux training Gregory Clement Thomas Petazzoni Michael Opdenacker Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com Rights to copy © Copyright 2004-2011, Free Electrons [email protected] Electronic version of this document available on http://free-electrons.com/doc/training/embedded-linux Updates will be available on http://free-electrons.com/doc/training/embedded-linux/ Attribution ± ShareAlike 3.0 Corrections, suggestions, You are free contributions and translations are welcome! to copy, distribute, display, and perform the work to make derivative works Latest update: Feb 14, 2011 to make commercial use of the work Under the following conditions Attribution. You must give the original author credit. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com Linux kernel Linux device drivers Free Electrons Board support code Our services Mainstreaming kernel code Kernel debugging Custom Development System integration
    [Show full text]
  • MANAGING a REAL-TIME EMBEDDED LINUX PLATFORM with BUILDROOT John Diamond, Kevin Martin Fermi National Accelerator Laboratory, Batavia, IL 60510
    MANAGING A REAL-TIME EMBEDDED LINUX PLATFORM WITH BUILDROOT John Diamond, Kevin Martin Fermi National Accelerator Laboratory, Batavia, IL 60510 Desktop distributions are an awkward Buildroot + ucLibc + Busybox + RTAI Quantitative Results implementation of an Embedded RTOS Buildroot – downloads, unpacks, • Whole build process is automated resulting in • Architecture-dependent binary configures, compiles and installs system much quicker build times (hours not days) software automatically • Kernel and root filesystem size: 3.5 MB – 20 packages uClibc – Small-footprint standard C library MB (reduction of 99%) • Loaded with unnecessary software Busybox – all-in-one UNIX utilities and shell • Boot-time: ~9 seconds • Huge footprints RTAI – Real-Time Linux extensions = Qualitative Results • Allows integration with revision control into First Try: Build Linux from Source the platform development process, making it • Success! But.. 2. Buildroot’s menuconfig generates a package configuration file easier to manage an ecosystem of targets • Is as difficult as it sounds and kernel configuration file • Community support for x86 & ARM targets Linux Kernel • Overwhelming number of packages and Configuration gives us confidence that future targets can be patches Package supported without much effort 1. Developer Configuration • No version control configures build via Buildroot’s • Cross-compile even more headaches menuconfig Internet Build Process Power Supply Control Quench Protection Git / CVS / SVN and Regulation for the System for Tevatron Did not do what we needed: Fermilab Linac Electron Lens (TEL II) 3. The build process pulls 4. The output from the software packages from build process is a kernel • Small-footprint network bootable image the internet and custom bzImage bzImage file with an softare packages from a integrated root filesystem ARM Cortex A-9 source code repository file PC/104 AMD • Automated build system Geode SBC Beam Position Monitor Power Supply Control prototype for Fermilab and Regulation for • Support for multiple architectures 5.
    [Show full text]
  • Implantación De Linux Sobre Microcontroladores
    Embedded Linux system development Embedded Linux system development DSI Embedded Linux Free Electrons Developers © Copyright 2004-2018, Free Electrons. Creative Commons BY-SA 3.0 license. Latest update: March 14, 2018. Document updates and sources: http://free-electrons.com/doc/training/embedded-linux Corrections, suggestions, contributions and translations are welcome! DSI - FCEIA http://dsi.fceia.unr.edu.ar 1/263 Derechos de copia © Copyright 2018, Luciano Diamand Licencia: Creative Commons Attribution - Share Alike 3.0 http://creativecommons.org/licenses/by-sa/3.0/legalcode Ud es libre de: I copiar, distribuir, mostrar y realizar el trabajo I hacer trabajos derivados I hacer uso comercial del trabajo Bajo las siguientes condiciones: I Atribuci´on. Debes darle el cr´editoal autor original. I Compartir por igual. Si altera, transforma o construye sobre este trabajo, usted puede distribuir el trabajo resultante solamente bajo una licencia id´enticaa ´esta. I Para cualquier reutilizaci´ono distribuci´on,debe dejar claro a otros los t´erminos de la licencia de este trabajo. I Se puede renunciar a cualquiera de estas condiciones si usted consigue el permiso del titular de los derechos de autor. El uso justo y otros derechos no se ven afectados por lo anterior. DSI - FCEIA http://dsi.fceia.unr.edu.ar 2/263 Hiperv´ınculosen el documento Hay muchos hiperv´ınculosen el documento I Hiperv´ıncluosregulares: http://kernel.org/ I Enlaces a la documentaci´ondel Kernel: Documentation/kmemcheck.txt I Enlaces a los archivos fuente y directorios del kernel: drivers/input include/linux/fb.h I Enlaces a declaraciones, definiciones e instancias de los simbolos del kernel (funciones, tipos, datos, estructuras): platform_get_irq() GFP_KERNEL struct file_operations DSI - FCEIA http://dsi.fceia.unr.edu.ar 3/263 Introducci´ona Linux Embebido Introducci´ona DSI Linux Embebido Embedded Linux Developers Free Electrons © Copyright 2004-2018, Free Electrons.
    [Show full text]
  • Anatomy of Cross-Compilation Toolchains
    Embedded Linux Conference Europe 2016 Anatomy of cross-compilation toolchains Thomas Petazzoni free electrons [email protected] Artwork and Photography by Jason Freeny free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 1/1 Thomas Petazzoni I CTO and Embedded Linux engineer at Free Electrons I Embedded Linux specialists. I Development, consulting and training. I http://free-electrons.com I Contributions I Kernel support for the Marvell Armada ARM SoCs from Marvell I Major contributor to Buildroot, an open-source, simple and fast embedded Linux build system I Living in Toulouse, south west of France Drawing from Frank Tizzoni, at Kernel Recipes 2016 free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 2/1 Disclaimer I I am not a toolchain developer. Not pretending to know everything about toolchains. I Experience gained from building simple toolchains in the context of Buildroot I Purpose of the talk is to give an introduction, not in-depth information. I Focused on simple gcc-based toolchains, and for a number of examples, on ARM specific details. I Will not cover advanced use cases, such as LTO, GRAPHITE optimizations, etc. I Will not cover LLVM free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 3/1 What is a cross-compiling toolchain? I A set of tools that allows to build source code into binary code for
    [Show full text]
  • Linux Embebido Workshop Linux Embebido
    Linux embebido Workshop Linux Embebido Lucas Chiesa Joaquín de Andrés Germán Bassi Laboratorio Sistemas embebidos FIUBA Creative Commons BY-SA 3.0 license Basado en : http://free-electrons.com/docs/embedded-linux-intro ¿Sistema embebido? Un sistema embebido o empotrado es un sistema de computación diseñado para realizar una o algunas pocas funciones dedicadas frecuentemente en un sistema de computación en tiempo real. Los sistemas embebidos se utilizan para usos muy diferentes a los usos generales a los que se suelen someter a las computadoras personales. Wikipedia, http://es.wikipedia.org/wiki/Sistema_embebido SASE 2011 - Workshop Linux embebido 2 Muchos sistemas diferentes Es una definición muy genérica: Cubre muchos tipos diferentes de sistemas Linea borrosa con sistemas tradicionales Productos ªConsumer electronics (CE)º: Routers hogareños, reproductores de DVD, Televisores, cámaras digitales, GPS, celulares ... Productos industriales: Controladores de máquinas, alarmas, equipos de vigilancia, autos, satélites... SASE 2011 - Workshop Linux embebido 3 Muchos productos diferentes SASE 2011 - Workshop Linux embebido 4 Linux Embebido El Software Libre y Abierto ofrece una rango muy amplio de herramientas para desarrollar sistemas embebidos. Ventajas Reutilizar componentes existentes para el sistema base. Permite concentrarse en el valor agregado del producto. Componentes de alta calidad y muy probados. (Kernel Linux , librerías de C ...) Control completo sobre la elección de componentes. Modificaciones posibles ilimitadas. Soporte por la comunidades: tutoriales, listas de correo... Bajo costo, sin licencias por unidad. Acceso más simple al software y a las herramientas. SASE 2011 - Workshop Linux embebido 5 Ejemplos de dispositivos GPS: TomTom y Garmin Routers hogareños: Linksys, Netgear PDA: Zaurus, Nokia N8x0 TVs, DVDs: Sony, Philips, ..
    [Show full text]