August 14, 2015 7:48 WSPC/S1793-0421 203-IJNT 1550080 International Journal of Number Theory Vol. 11, No. 6 (2015) 1839–1885 c World Scientific Publishing Company DOI: 10.1142/S1793042115500803 Construction of all cubic function fields of a given square-free discriminant M. J. Jacobson, Jr. Department of Computer Science University of Calgary, 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4
[email protected] Y. Lee Department of Mathematics Ewha Womans University, Seodaemoonku Seoul 120-750, South Korea
[email protected] R. Scheidler∗ and H. C. Williams† Department of Mathematics and Statistics University of Calgary, 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4 ∗
[email protected] †
[email protected] Received 4 November 2013 Accepted 27 October 2014 Published 14 May 2015 For any square-free polynomial D over a finite field of characteristic at least 5, we present an algorithm for generating all cubic function fields of discriminant D.Wealsoprovide a count of all these fields according to their splitting at infinity. When D = D/(−3) has even degree and a leading coefficient that is a square, i.e. D is the discriminant of a real quadratic function field, this method makes use of the infrastructures of this field. This infrastructure method was first proposed by Shanks for cubic number fields in an unpublished manuscript from the late 1980s. While the mathematical ingredients of our construction are largely classical, our algorithm has the major computational advantage of finding very small minimal polynomials for the fields in question. Keywords: Cubic function field; quadratic function field; discriminant; signature; quadratic generator; reduced ideal.