8 Apr 2021 Quantum Density Matrices . L13–1 Pure and Mixed States In

Total Page:16

File Type:pdf, Size:1020Kb

8 Apr 2021 Quantum Density Matrices . L13–1 Pure and Mixed States In 8 apr 2021 quantum density matrices . L13{1 Pure and Mixed States in Quantum Mechanics Review of the Basic Formalism and Pure States • Definition: A pure quantum state is a vector Ψ = j i in a Hilbert space H, a complex vector space with an inner product hφj i. This defines a norm in the space, k k := h j i1=2, and we will usually assume that all vectors are normalized, so that k k = 1. For a particle moving in a region R of space these vectors are commonly taken to be square-integrable functions (r) in H = L2(R; d3x), with inner product defined by Z hφj i := d3x φ∗(x) (x) : R • Choice of basis and interpretation: Any state can be written as a linear combination j i = P c jφ i of pα α α i k·x elements of a complete orthonormal set fjφαi j hφαjφα0 i = δαα0 g (for example φk(x) = e = V ), where iθα the coefficients cα = jcαj e are the probability amplitudes for the system to be found in the corresponding states. • Observables: A quantum observable is an operator A^ : H!H that is self-adjoint (if the corresponding ^ classical observable is real). The possible outcomes of a measurement of A are its eigenvalues λα, satisfying ^ ^ A φα = λαφα, where φα are its eigenvectors. The expectation value of A in a given state Ψ is Z ^ ^ 3 3 ∗ ^ P ∗ hAi = h jAj i = d q1::: d qN (q) A (q) = α,α0 cαcα0 Aαα0 : ^ • Time evolution: It is governed by the Hamiltonian operator H. If fφαg is a basis of eigenfunctions of the ^ Hamiltonian, with Hφα = Eα φα, the Schr¨odingerequation and the time evolution of a state are given by @ (x; t) i R ^ = − H^ (x; t) ; (x; t) = U^(t; t ) (x; t ) = e−i Hdt=h¯ (x; t ) = P c φ (x) e−iEαt=h¯ : @t ¯h 0 0 0 α α α • Density-matrix notation: Given any state Ψ, define the operator ρ = j i h j. If the vector Ψ is normalized this operator satisfies ρ2 = ρ, ρy = ρ (it is a projection operator), and tr ρ = 1, and we can rewrite expectation ^ ^ P values as hAi = tr ρA. Then, if Ψ = α cα Φα, in terms of a complete orthonormal set P ∗ ρ = αα0 ραα0 jφαihφα0 j ; with ραα0 = cαcα0 ; Mixed Quantum States • Idea: A mixed state gives us the probability of finding the system in any given element of a basis for the Hilbert space, but does not contain information on all phases θα. We represent it as an operator ρ : H!H satisfying ρy = ρ and tr ρ = 1, but not necessarily ρ2 = ρ. The space of density matrices is Liouville space. • Interpretation: Since we can use any basis to calculate a trace, we choose as basis fφαg one whose elements ^ are eigenvectors of the observable A, with corresponding eigenvalues λα; in this basis, Aαα0 = λαδαα0 . Then, for any mixed state ρ, ραα is the probability of finding the system in eigenstate α, as with a pure state, and ^ ^ P hAiρ = tr ρA = α ρααλα : • Mixed states from averaged-out phase information: In quantum statistical mechanics mixed states often 2 arise as follows. If the probabilities jaαj that a quantum system will be found in each of the jφαis are known while the phases θα are not, assume that all values are equally likely and average the matrix elements ∗ ραα0 = cαcα0 over 0 < θα < 2π. The off-diagonal entries in ραα0 will average to zero, while the diagonal 2 2 entries will give ραα = jcαj . The new density matrix ρ in general no longer satisfies ρ = ρ. • Additional comments: (1) For a system consisting of two subsystems A and B, H = HA ⊗ HB, and a mixed state for A can be obtained from any state ρA;B by tracing over subsystem B, ρA = trB ρA;B. (2) As a measure of the mixedness of a quantum state ρ one can use its n = 2 R´enyi entropy. 8 apr 2021 quantum density matrices . L13{2 Example: Mixed State for the Spin of an Electron h¯ h¯ • Density matrix: Suppose that an electron has a 50% probability of Sz being + 2 , and 50% of being − 2 . A pure state, its corresponding density matrix, and a mixed state which give these values are, respectively, 1 e−iθ 1 a j i = p1 (j" i + eiθj# i) or ρ = j ih j = 1 ; ρ = 1 : 2 pure 2 eiθ 1 mixed 2 a∗ 1 • Mean value and fluctuation of spin: Check that the mean value of Sz vanishes in both states and calculate 2 the mean value of Sx in both states; why is the result reasonable? Calculate their variances (∆Sz) and 2 (∆Sx) , and compare the results for the pure state and the mixed state; comment on the results. State Evolution • Evolution equation: Working in the Schr¨odingerpicture, we start by obtaining the time evolution of a ρ corresponding to a pure state, ρ = j ih j, by taking a time derivative of ρ(x; x0) = ∗(x) (x0), @ @ ∗(x) @ (x0) 1 ρ(x; x0) = (x0) + ∗(x) = [H;^ ρ ] : @t @t @t i¯h By linearity we can then extend the validity of the expression (1=i¯h)[H;^ ρ ] for the time derivative to all density matrices ρ. This is the Liouville-von Neumann equation, and the operator L^ = (i¯h)−1[H;^ · ] is sometimes ^ ^ y ^ R ^ called the Liouvillian. Alternatively, ρ(t) = U(t; t0) ρ(t0) U(t; t0) , with U(t; t0) = exp{−i Hdt=¯hg. • Quantum equilibrium density matrix: An equilibrium density matrix is one which is time-independent or, given the form of the evolution equation for ρ, one satisfying [H;^ ρ ] = 0. So, ρ must be a function of some set of 3N commuting operators including H^ , and be diagonal in the corresponding basis of eigenstates. The Quantum Microcanonical Density Matrix • Form of the density matrix: To describe a system with energy En 2 (E − ∆=2;E + ∆=2) in an incoherent superposition of states, start with a coherent sum over such states, = P ja j eiθn φ , and write ρ as an n n n average j ih j over all phase angles θn. The assumption of equal a priori probabilities implies that all janj for states in this energy range are equal; if we also assume a priori uniformly random phases, we get 0 1 0 i(θα−θα) ρ 0 = ja j ja j e = δ 0 for E 2 (E − ∆=2;E + ∆=2) ; and 0 otherwise ; αα α α Γ(N; V; E; ∆) αα α where Γ(N; V; E; ∆) is the number of states in this energy range. The Quantum (Grand) Canonical Density Matrix • Form of the density matrix: If we can partition the system into two parts, each of which is similar to the whole system so that its ρ is the same function of the constants of motion, with little interaction between (1) (2) (1) (2) them, then as in the classical case H ≈ H1 + H2 and ραα = ρα1α1 ρα2α2 , so ln ραα = ln ρα1α1 + ln ρα2α2 . ~ This means that ln ραα must be an additive constant of the motion, or neglecting a possible overall ~p or L and in a basis of eigenstates of H^ and N^, c−βEα+βµNα ραα0 = e δαα0 : Then, in an arbitrary basis and calling ec =: Z−1 (K := H −µN is sometimes called the grand Hamiltonian), 1 ρ = e−β(H^ −µN^) ;Z := tr e−β(H^ −µN^) : Z 1 ~ ~ ~ • Example: A spin- 2 particle in a magnetic field B = B z^, with Hamiltonian H = −~µ · B = −µ ~σ · B, where the σi are the Pauli matrices 0 1 0 i 1 0 σ = ; σ = ; σ = : x 1 0 y −i 0 z 0 −1 −1 βµB −βµB Then ρ = [2 cosh(βµB)] diag(e ; e ) and one gets, for example, hµzi = µ tanh(βµB). Reading • Textbooks: Kennett does not discuss this material; Pathria & Beale, Chapter 5. • Other references: Part of this material is covered in Plischke & Bergersen (Sec 2.4), Halley (first half of Ch 2) and Schwabl (Sec 1.3-1.4). An extended treatment is in J A Gyamfi, arXiv:2003.11472 (2020)..
Recommended publications
  • Motion of the Reduced Density Operator
    Motion of the Reduced Density Operator Nicholas Wheeler, Reed College Physics Department Spring 2009 Introduction. Quantum mechanical decoherence, dissipation and measurements all involve the interaction of the system of interest with an environmental system (reservoir, measurement device) that is typically assumed to possess a great many degrees of freedom (while the system of interest is typically assumed to possess relatively few degrees of freedom). The state of the composite system is described by a density operator ρ which in the absence of system-bath interaction we would denote ρs ρe, though in the cases of primary interest that notation becomes unavailable,⊗ since in those cases the states of the system and its environment are entangled. The observable properties of the system are latent then in the reduced density operator ρs = tre ρ (1) which is produced by “tracing out” the environmental component of ρ. Concerning the specific meaning of (1). Let n) be an orthonormal basis | in the state space H of the (open) system, and N) be an orthonormal basis s !| " in the state space H of the (also open) environment. Then n) N) comprise e ! " an orthonormal basis in the state space H = H H of the |(closed)⊗| composite s e ! " system. We are in position now to write ⊗ tr ρ I (N ρ I N) e ≡ s ⊗ | s ⊗ | # ! " ! " ↓ = ρ tr ρ in separable cases s · e The dynamics of the composite system is generated by Hamiltonian of the form H = H s + H e + H i 2 Motion of the reduced density operator where H = h I s s ⊗ e = m h n m N n N $ | s| % | % ⊗ | % · $ | ⊗ $ | m,n N # # $% & % &' H = I h e s ⊗ e = n M n N M h N | % ⊗ | % · $ | ⊗ $ | $ | e| % n M,N # # $% & % &' H = m M m M H n N n N i | % ⊗ | % $ | ⊗ $ | i | % ⊗ | % $ | ⊗ $ | m,n M,N # # % &$% & % &'% & —all components of which we will assume to be time-independent.
    [Show full text]
  • The Concept of Quantum State : New Views on Old Phenomena Michel Paty
    The concept of quantum state : new views on old phenomena Michel Paty To cite this version: Michel Paty. The concept of quantum state : new views on old phenomena. Ashtekar, Abhay, Cohen, Robert S., Howard, Don, Renn, Jürgen, Sarkar, Sahotra & Shimony, Abner. Revisiting the Founda- tions of Relativistic Physics : Festschrift in Honor of John Stachel, Boston Studies in the Philosophy and History of Science, Dordrecht: Kluwer Academic Publishers, p. 451-478, 2003. halshs-00189410 HAL Id: halshs-00189410 https://halshs.archives-ouvertes.fr/halshs-00189410 Submitted on 20 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « The concept of quantum state: new views on old phenomena », in Ashtekar, Abhay, Cohen, Robert S., Howard, Don, Renn, Jürgen, Sarkar, Sahotra & Shimony, Abner (eds.), Revisiting the Foundations of Relativistic Physics : Festschrift in Honor of John Stachel, Boston Studies in the Philosophy and History of Science, Dordrecht: Kluwer Academic Publishers, 451-478. , 2003 The concept of quantum state : new views on old phenomena par Michel PATY* ABSTRACT. Recent developments in the area of the knowledge of quantum systems have led to consider as physical facts statements that appeared formerly to be more related to interpretation, with free options.
    [Show full text]
  • Density Matrix Description of NMR
    Density Matrix Description of NMR BCMB/CHEM 8190 Operators in Matrix Notation • It will be important, and convenient, to express the commonly used operators in matrix form • Consider the operator Iz and the single spin functions α and β - recall ˆ ˆ ˆ ˆ ˆ ˆ Ix α = 1 2 β Ix β = 1 2α Iy α = 1 2 iβ Iy β = −1 2 iα Iz α = +1 2α Iz β = −1 2 β α α = β β =1 α β = β α = 0 - recall the expectation value for an observable Q = ψ Qˆ ψ = ∫ ψ∗Qˆψ dτ Qˆ - some operator ψ - some wavefunction - the matrix representation is the possible expectation values for the basis functions α β α ⎡ α Iˆ α α Iˆ β ⎤ ⎢ z z ⎥ ⎢ ˆ ˆ ⎥ β ⎣ β Iz α β Iz β ⎦ ⎡ α Iˆ α α Iˆ β ⎤ ⎡1 2 α α −1 2 α β ⎤ ⎡1 2 0 ⎤ ⎡1 0 ⎤ ˆ ⎢ z z ⎥ 1 Iz = = ⎢ ⎥ = ⎢ ⎥ = ⎢ ⎥ ⎢ ˆ ˆ ⎥ 1 2 β α −1 2 β β 0 −1 2 2 0 −1 ⎣ β Iz α β Iz β ⎦ ⎣⎢ ⎦⎥ ⎣ ⎦ ⎣ ⎦ • This is convenient, as the operator is just expressed as a matrix of numbers – no need to derive it again, just store it in computer Operators in Matrix Notation • The matrices for Ix, Iy,and Iz are called the Pauli spin matrices ˆ ⎡ 0 1 2⎤ 1 ⎡0 1 ⎤ ˆ ⎡0 −1 2 i⎤ 1 ⎡0 −i ⎤ ˆ ⎡1 2 0 ⎤ 1 ⎡1 0 ⎤ Ix = ⎢ ⎥ = ⎢ ⎥ Iy = ⎢ ⎥ = ⎢ ⎥ Iz = ⎢ ⎥ = ⎢ ⎥ ⎣1 2 0 ⎦ 2 ⎣1 0⎦ ⎣1 2 i 0 ⎦ 2 ⎣i 0 ⎦ ⎣ 0 −1 2⎦ 2 ⎣0 −1 ⎦ • Express α , β , α and β as 1×2 column and 2×1 row vectors ⎡1⎤ ⎡0⎤ α = ⎢ ⎥ β = ⎢ ⎥ α = [1 0] β = [0 1] ⎣0⎦ ⎣1⎦ • Using matrices, the operations of Ix, Iy, and Iz on α and β , and the orthonormality relationships, are shown below ˆ 1 ⎡0 1⎤⎡1⎤ 1 ⎡0⎤ 1 ˆ 1 ⎡0 1⎤⎡0⎤ 1 ⎡1⎤ 1 Ix α = ⎢ ⎥⎢ ⎥ = ⎢ ⎥ = β Ix β = ⎢ ⎥⎢ ⎥ = ⎢ ⎥ = α 2⎣1 0⎦⎣0⎦ 2⎣1⎦ 2 2⎣1 0⎦⎣1⎦ 2⎣0⎦ 2 ⎡1⎤ ⎡0⎤ α α = [1 0]⎢ ⎥
    [Show full text]
  • Entanglement of the Uncertainty Principle
    Open Journal of Mathematics and Physics | Volume 2, Article 127, 2020 | ISSN: 2674-5747 https://doi.org/10.31219/osf.io/9jhwx | published: 26 Jul 2020 | https://ojmp.org EX [original insight] Diamond Open Access Entanglement of the Uncertainty Principle Open Quantum Collaboration∗† August 15, 2020 Abstract We propose that position and momentum in the uncertainty principle are quantum entangled states. keywords: entanglement, uncertainty principle, quantum gravity The most updated version of this paper is available at https://osf.io/9jhwx/download Introduction 1. [1] 2. Logic leads us to conclude that quantum gravity–the theory of quan- tum spacetime–is the description of entanglement of the quantum states of spacetime and of the extra dimensions (if they really ex- ist) [2–7]. ∗All authors with their affiliations appear at the end of this paper. †Corresponding author: [email protected] | Join the Open Quantum Collaboration 1 Quantum Gravity 3. quantum gravity quantum spacetime entanglement of spacetime 4. Quantum spaceti=me might be in a sup=erposition of the extra dimen- sions [8]. Notation 5. UP Uncertainty Principle 6. UP= the quantum state of the uncertainty principle ∣ ⟩ = Discussion on the notation 7. The universe is mathematical. 8. The uncertainty principle is part of our universe, thus, it is described by mathematics. 9. A physical theory must itself be described within its own notation. 10. Thereupon, we introduce UP . ∣ ⟩ Entanglement 11. UP α1 x1p1 α2 x2p2 α3 x3p3 ... 12. ∣xi ⟩u=ncer∣tainty⟩ +in po∣ sitio⟩n+ ∣ ⟩ + 13. pi = uncertainty in momentum 14. xi=pi xi pi xi pi ∣ ⟩ = ∣ ⟩ ∣ ⟩ = ∣ ⟩ ⊗ ∣ ⟩ 2 Final Remarks 15.
    [Show full text]
  • Path Integral for the Hydrogen Atom
    Path Integral for the Hydrogen Atom Solutions in two and three dimensions Vägintegral för Väteatomen Lösningar i två och tre dimensioner Anders Svensson Faculty of Health, Science and Technology Physics, Bachelor Degree Project 15 ECTS Credits Supervisor: Jürgen Fuchs Examiner: Marcus Berg June 2016 Abstract The path integral formulation of quantum mechanics generalizes the action principle of classical mechanics. The Feynman path integral is, roughly speaking, a sum over all possible paths that a particle can take between fixed endpoints, where each path contributes to the sum by a phase factor involving the action for the path. The resulting sum gives the probability amplitude of propagation between the two endpoints, a quantity called the propagator. Solutions of the Feynman path integral formula exist, however, only for a small number of simple systems, and modifications need to be made when dealing with more complicated systems involving singular potentials, including the Coulomb potential. We derive a generalized path integral formula, that can be used in these cases, for a quantity called the pseudo-propagator from which we obtain the fixed-energy amplitude, related to the propagator by a Fourier transform. The new path integral formula is then successfully solved for the Hydrogen atom in two and three dimensions, and we obtain integral representations for the fixed-energy amplitude. Sammanfattning V¨agintegral-formuleringen av kvantmekanik generaliserar minsta-verkanprincipen fr˚anklassisk meka- nik. Feynmans v¨agintegral kan ses som en summa ¨over alla m¨ojligav¨agaren partikel kan ta mellan tv˚a givna ¨andpunkterA och B, d¨arvarje v¨agbidrar till summan med en fasfaktor inneh˚allandeden klas- siska verkan f¨orv¨agen.Den resulterande summan ger propagatorn, sannolikhetsamplituden att partikeln g˚arfr˚anA till B.
    [Show full text]
  • Two-State Systems
    1 TWO-STATE SYSTEMS Introduction. Relative to some/any discretely indexed orthonormal basis |n) | ∂ | the abstract Schr¨odinger equation H ψ)=i ∂t ψ) can be represented | | | ∂ | (m H n)(n ψ)=i ∂t(m ψ) n ∂ which can be notated Hmnψn = i ∂tψm n H | ∂ | or again ψ = i ∂t ψ We found it to be the fundamental commutation relation [x, p]=i I which forced the matrices/vectors thus encountered to be ∞-dimensional. If we are willing • to live without continuous spectra (therefore without x) • to live without analogs/implications of the fundamental commutator then it becomes possible to contemplate “toy quantum theories” in which all matrices/vectors are finite-dimensional. One loses some physics, it need hardly be said, but surprisingly much of genuine physical interest does survive. And one gains the advantage of sharpened analytical power: “finite-dimensional quantum mechanics” provides a methodological laboratory in which, not infrequently, the essentials of complicated computational procedures can be exposed with closed-form transparency. Finally, the toy theory serves to identify some unanticipated formal links—permitting ideas to flow back and forth— between quantum mechanics and other branches of physics. Here we will carry the technique to the limit: we will look to “2-dimensional quantum mechanics.” The theory preserves the linearity that dominates the full-blown theory, and is of the least-possible size in which it is possible for the effects of non-commutivity to become manifest. 2 Quantum theory of 2-state systems We have seen that quantum mechanics can be portrayed as a theory in which • states are represented by self-adjoint linear operators ρ ; • motion is generated by self-adjoint linear operators H; • measurement devices are represented by self-adjoint linear operators A.
    [Show full text]
  • (Ab Initio) Pathintegral Molecular Dynamics
    (Ab initio) path-integral Molecular Dynamics The double slit experiment Sum over paths: Suppose only two paths: interference The double slit experiment ● Introduce of a large number of intermediate gratings, each containing many slits. ● Electrons may pass through any sequence of slits before reaching the detector ● Take the limit in which infinitely many gratings → empty space Do nuclei really behave classically ? Do nuclei really behave classically ? Do nuclei really behave classically ? Do nuclei really behave classically ? Example: proton transfer in malonaldehyde only one quantum proton Tuckerman and Marx, Phys. Rev. Lett. (2001) Example: proton transfer in water + + Classical H5O2 Quantum H5O2 Marx et al. Nature (1997) Proton inWater-Hydroxyl (Ice) Overlayers on Metal Surfaces T = 160 K Li et al., Phys. Rev. Lett. (2010) Proton inWater-Hydroxyl (Ice) Overlayers on Metal Surfaces Li et al., Phys. Rev. Lett. (2010) The density matrix: definition Ensemble of states: Ensemble average: Let©s define: ρ is hermitian: real eigenvalues The density matrix: time evolution and equilibrium At equilibrium: ρ can be expressed as pure function of H and diagonalized simultaneously with H The density matrix: canonical ensemble Canonical ensemble: Canonical density matrix: Path integral formulation One particle one dimension: K and Φ do not commute, thus, Trotter decomposition: Canonical density matrix: Path integral formulation Evaluation of: Canonical density matrix: Path integral formulation Matrix elements of in space coordinates: acts on the eigenstates from the left: Canonical density matrix: Path integral formulation Where it was used: It can be Monte Carlo sampled, but for MD we need momenta! Path integral isomorphism Introducing a chain frequency and an effective potential: Path integral molecular dynamics Fictitious momenta: introducing a set of P Gaussian integrals : convenient parameter Gaussian integrals known: (adjust prefactor ) Does it work? i.
    [Show full text]
  • Structure of a Spin ½ B
    Structure of a spin ½ B. C. Sanctuary Department of Chemistry, McGill University Montreal Quebec H3H 1N3 Canada Abstract. The non-hermitian states that lead to separation of the four Bell states are examined. In the absence of interactions, a new quantum state of spin magnitude 1/√2 is predicted. Properties of these states show that an isolated spin is a resonance state with zero net angular momentum, consistent with a point particle, and each resonance corresponds to a degenerate but well defined structure. By averaging and de-coherence these structures are shown to form ensembles which are consistent with the usual quantum description of a spin. Keywords: Bell states, Bell’s Inequalities, spin theory, quantum theory, statistical interpretation, entanglement, non-hermitian states. PACS: Quantum statistical mechanics, 05.30. Quantum Mechanics, 03.65. Entanglement and quantum non-locality, 03.65.Ud 1. INTRODUCTION In spite of its tremendous success in describing the properties of microscopic systems, the debate over whether quantum mechanics is the most fundamental theory has been going on since its inception1. The basic property of quantum mechanics that belies it as the most fundamental theory is its statistical nature2. The history is well known: EPR3 showed that two non-commuting operators are simultaneously elements of physical reality, thereby concluding that quantum mechanics is incomplete, albeit they assumed locality. Bohr4 replied with complementarity, arguing for completeness; thirty years later Bell5, questioned the locality assumption6, and the conclusion drawn that any deeper theory than quantum mechanics must be non-local. In subsequent years the idea that entangled states can persist to space-like separations became well accepted7.
    [Show full text]
  • Hamilton Equations, Commutator, and Energy Conservation †
    quantum reports Article Hamilton Equations, Commutator, and Energy Conservation † Weng Cho Chew 1,* , Aiyin Y. Liu 2 , Carlos Salazar-Lazaro 3 , Dong-Yeop Na 1 and Wei E. I. Sha 4 1 College of Engineering, Purdue University, West Lafayette, IN 47907, USA; [email protected] 2 College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; [email protected] 3 Physics Department, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; [email protected] 4 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China; [email protected] * Correspondence: [email protected] † Based on the talk presented at the 40th Progress In Electromagnetics Research Symposium (PIERS, Toyama, Japan, 1–4 August 2018). Received: 12 September 2019; Accepted: 3 December 2019; Published: 9 December 2019 Abstract: We show that the classical Hamilton equations of motion can be derived from the energy conservation condition. A similar argument is shown to carry to the quantum formulation of Hamiltonian dynamics. Hence, showing a striking similarity between the quantum formulation and the classical formulation. Furthermore, it is shown that the fundamental commutator can be derived from the Heisenberg equations of motion and the quantum Hamilton equations of motion. Also, that the Heisenberg equations of motion can be derived from the Schrödinger equation for the quantum state, which is the fundamental postulate. These results are shown to have important bearing for deriving the quantum Maxwell’s equations. Keywords: quantum mechanics; commutator relations; Heisenberg picture 1. Introduction In quantum theory, a classical observable, which is modeled by a real scalar variable, is replaced by a quantum operator, which is analogous to an infinite-dimensional matrix operator.
    [Show full text]
  • Chapter 2 Outline of Density Matrix Theory
    Chapter 2 Outline of density matrix theory 2.1 The concept of a density matrix Aphysical exp eriment on a molecule usually consists in observing in a macroscopic 1 ensemble a quantity that dep ends on the particle's degrees of freedom (like the measure of a sp ectrum, that derives for example from the absorption of photons due to vibrational transitions). When the interactions of each molecule with any 2 other physical system are comparatively small , it can b e describ ed by a state vector j (t)i whose time evolution follows the time{dep endent Schrodinger equation i _ ^ j (t)i = iH j (t)i; (2.1) i i ^ where H is the system Hamiltonian, dep ending only on the degrees of freedom of the molecule itself. Even if negligible in rst approximation, the interactions with the environment usually bring the particles to a distribution of states where many of them b ehave in a similar way b ecause of the p erio dic or uniform prop erties of the reservoir (that can just consist of the other molecules of the gas). For numerical purp oses, this can 1 There are interesting exceptions to this, the \single molecule sp ectroscopies" [44,45]. 2 Of course with the exception of the electromagnetic or any other eld probing the system! 10 Outline of density matrix theory b e describ ed as a discrete distribution. The interaction b eing small compared to the internal dynamics of the system, the macroscopic e ect will just be the incoherent sum of the observables computed for every single group of similar particles times its 3 weight : 1 X ^ ^ < A>(t)= h (t)jAj (t)i (2.2) i i i i=0 If we skip the time dep endence, we can think of (2.2) as a thermal distribution, in this case the would b e the Boltzmann factors: i E i k T b e := (2.3) i Q where E is the energy of state i, and k and T are the Boltzmann constant and the i b temp erature of the reservoir, resp ectively .
    [Show full text]
  • Revisiting Online Quantum State Learning
    The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) Revisiting Online Quantum State Learning Feidiao Yang, Jiaqing Jiang, Jialin Zhang, Xiaoming Sun Institute of Computing Technology, Chinese Academy of Sciences, Bejing, China University of Chinese Academy of Sciences, Beijing, China {yangfeidiao, jiangjiaqing, zhangjialin, sunxiaoming}@ict.ac.cn Abstract theories may also help solve some interesting problems in quantum computation and quantum information (Carleo and In this paper, we study the online quantum state learn- Troyer 2017). In this paper, we apply the online learning the- ing problem which is recently proposed by Aaronson et al. (2018). In this problem, the learning algorithm sequentially ory to solve an interesting problem of learning an unknown predicts quantum states based on observed measurements and quantum state. losses and the goal is to minimize the regret. In the previ- Learning an unknown quantum state is a fundamental ous work, the existing algorithms may output mixed quan- problem in quantum computation and quantum information. tum states. However, in many scenarios, the prediction of a The basic version is the quantum state tomography prob- pure quantum state is required. In this paper, we first pro- lem (Vogel and Risken 1989), which aims to fully recover pose a Follow-the-Perturbed-Leader (FTPL) algorithm that the classical description of an unknown quantum state. Al- can guarantee to predict pure quantum states. Theoretical√ O( T ) though quantum state tomography gives a complete char- analysis shows that our algorithm can achieve an ex- acterization of the target state, it is quite costly. Recent pected regret under some reasonable settings.
    [Show full text]
  • The Paradoxes of the Interaction-Free Measurements
    The Paradoxes of the Interaction-free Measurements L. Vaidman Centre for Quantum Computation, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford 0X1 3PU, England; School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel Reprint requests to Prof. L. V.; E-mail: [email protected] Z. Naturforsch. 56 a, 100-107 (2001); received January 12, 2001 Presented at the 3rd Workshop on Mysteries, Puzzles and Paradoxes in Quantum Mechanics, Gargnano, Italy, September 17-23, 2000. Interaction-free measurements introduced by Elitzur and Vaidman [Found. Phys. 23,987 (1993)] allow finding infinitely fragile objects without destroying them. Paradoxical features of these and related measurements are discussed. The resolution of the paradoxes in the framework of the Many-Worlds Interpretation is proposed. Key words: Interaction-free Measurements; Quantum Paradoxes. I. Introduction experiment” proposed by Wheeler [22] which helps to define the context in which the above claims, that The interaction-free measurements proposed by the measurements are interaction-free, are legitimate. Elitzur and Vaidman [1,2] (EVIFM) led to numerousSection V is devoted to the variation of the EV IFM investigations and several experiments have been per­ proposed by Penrose [23] which, instead of testing for formed [3- 17]. Interaction-free measurements are the presence of an object in a particular place, tests very paradoxical. Usually it is claimed that quantum a certain property of the object in an interaction-free measurements, in contrast to classical measurements, way. Section VI introduces the EV IFM procedure for invariably cause a disturbance of the system.
    [Show full text]