Range-Kernel Weak Orthogonality of Some Elementary Operators
Open Mathematics 2021; 19: 32–45 Research Article Ahmed Bachir*, Abdelkader Segres, and Nawal A. Sayyaf Range-kernel weak orthogonality of some elementary operators https://doi.org/10.1515/math-2021-0001 received December 3, 2019; accepted October 12, 2020 Abstract: We study the range-kernel weak orthogonality of certain elementary operators induced by non- normal operators, with respect to usual operator norm and the Von Newmann-Schatten p-norm(1 ≤<∞p ). Keywords: range-kernel orthogonality, elementary operator, Schatten p-classes, quasinormal operator, sub- normal operator, k-quasihyponormal operator MSC 2020: 47A30, 47B20, 47B47, 47B10 1 Introduction Let B() be the algebra of all bounded linear operators acting on a complex separable Hilbert space . Given AB, ∈( B),wedefine the generalized derivation δAB, : BB()→() by δAB, ()=XAXX − B. ∗ 1 Let X ∈(B ) be a compact operator, and let s12()≥XsX ()≥…≥0 denote the eigenvalues of∣XXX∣=( )2 arranged in their decreasing order. The operator X is said to belong to the Schatten p-class p(),if 1 ∞ p pp1 ( ) ∥∥=XsXXp ∑ i () =tr (∣∣)<+∞p , 1 i=1 where tr denotes the trace functional. In case p =∞, we denote by ∞(), the ideal of compact operators equipped with the norm ∥∥XsX∞ =1 (). For p =(1, 1 ) is called the trace class, and for p =(2, 2 ) is called the Hilbert-Schmidt class and the case p =∞corresponds to the class. For more details, the reader is referred to [1]. In the sequel, we will use the following further notations and definitions. The closure of the range of an operatorTB∈() will be denoted by ran T and ker T denotes the kernel ofT.
[Show full text]