Lake County's Comprehensive Plan EAR – Conservation Element
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Site of the Month: Why Is Sebago Lake So Deep?
Why is Sebago Lake so deep? Maine Geological Survey Maine Geologic Facts and Localities February, 1999 Why is Sebago Lake so deep? 43° 51‘ 13.36“ N, 70° 33‘ 43.98“ W Text by Robert A. Johnston Maine Geological Survey, Department of Agriculture, Conservation & Forestry 1 Why is Sebago Lake so deep? Maine Geological Survey Introduction Modern geophysical equipment allows geologists to investigate previously unmapped environments, including ocean and lake floors. Recent geophysical research studied the types, composition, areal extent, and thickness of sediments on the bottom of Sebago Lake in southwestern Maine. Geologists used side- scan sonar and seismic reflection profiling to map the bottom of the lake. Approximately 58 percent of the lake bottom was imaged with side-scan sonar and over 60 miles of seismic reflection profiles were collected. This web site will discuss the findings of the seismic reflection profiling. Maine Geological Survey, Department of Agriculture, Conservation & Forestry 2 Why is Sebago Lake so deep? Maine Geological Survey Physiographic setting Sebago Lake, although second in surface area to Moosehead Lake, is Maine's deepest lake. With a water depth of 316 feet, its deepest part is 49 feet below sea level! Sebago Lake is located in southwestern Maine 20 miles northwest of Portland and 50 miles southeast of the White Mountains. It lies along the transition between the Central Highlands and the Coastal Lowlands physiographic regions of New England (Figure 1). The abrupt change in landscape can be seen in panoramic views from several vantage points near Sebago Lake. Denny, 1982 Denny, Maine Geological Survey From From Figure 1. -
AEG-ANR House Offer #1
Conference Committee on Senate Agriculture, Environment, and General Government Appropriations/ House Agriculture & Natural Resources Appropriations Subcommittee House Offer #1 Budget Spreadsheet Proviso and Back of the Bill Implementing Bill Saturday, April 17, 2021 7:00PM 412 Knott Building Conference Spreadsheet AGENCY House Offer #1 SB 2500 Row# ISSUE CODE ISSUE TITLE FTE RATE REC GR NR GR LATF NR LATF OTHER TFs ALL FUNDS FTE RATE REC GR NR GR LATF NR LATF OTHER TFs ALL FUNDS Row# 1 AGRICULTURE & CONSUMER SERVICES 1 2 1100001 Startup (OPERATING) 3,740.25 162,967,107 103,601,926 102,876,093 1,471,917,888 1,678,395,907 3,740.25 162,967,107 103,601,926 102,876,093 1,471,917,888 1,678,395,907 2 1601280 4,340,000 4,340,000 4,340,000 4,340,000 Continuation of Fiscal Year 2020-21 Budget Amendment Dacs- 3 - - - - 3 037/Eog-B0514 Increase In the Division of Licensing 1601700 Continuation of Budget Amendment Dacs-20/Eog #B0346 - 400,000 400,000 400,000 400,000 4 - - - - 4 Additional Federal Grants Trust Fund Authority 5 2401000 Replacement Equipment - - 6,583,594 6,583,594 - - 2,624,950 2,000,000 4,624,950 5 6 2401500 Replacement of Motor Vehicles - - 67,186 2,789,014 2,856,200 - - 1,505,960 1,505,960 6 6a 2402500 Replacement of Vessels - - 54,000 54,000 - - - 6a 7 2503080 Direct Billing for Administrative Hearings - - (489) (489) - - (489) (489) 7 33N0001 (4,624,909) (4,624,909) 8 Redirect Recurring Appropriations to Non-Recurring - Deduct (4,624,909) - (4,624,909) - 8 33N0002 4,624,909 4,624,909 9 Redirect Recurring Appropriations to Non-Recurring -
Implications for Management AFRICAN GREAT LAKES
AFRICAN GREAT LAKES CONFERENCE 2nd – 5th MAY 2017, ENTEBBE, UGANDA Dynamics of Fish Stocks of Commercial Importance in Lake Victoria, East Africa: Implications for Management Robert Kayanda, Anton Taabu-Munyaho, Dismas Mbabazi, Hillary Mrosso, and Chrisphine Nyamweya INTRODUCTION • Lake Victoria with a surface area of 68,800 sqkm is the world’s second largest freshwater body • It supports one of the world’s most productive inland fisheries with the estimated total fish landings from the lake for the period of 2011 to 2014 have been about 1 million tons with a beach value increasing from about US$ 550 Million in 2011 to about US$ 840 million in 2014. • It supports about 220,000 fishers (Frame Survey 2016) • The fish stocks of Lake Victoria have changed dramatically since the introduction of Nile perch Lates niloticus during the late 1950s and early 1960s Fishery Haplochromines The Original Fish Fauna Brycinus sp Protopterus Rastrineobola Mormyrus spp Barbus spp Bagrus docmac Labeo Schilbe intermedius Oreochromis variabilis Clarias gariepinus Mormyrus spp Synodontis victoriae Oreochromis leucostictus INTRODUCTION Currently, the fisheries is dominated by four major commercial important species, these are; •Nile perch •Dagaa •Nile tilapia •Haplochromis Apart from Nile tilapia only estimated through trawl and catch surveys, the other 3 are estimated through trawl, acoustics, and catch INTRODUCTION This paper summarizes current knowledge of the status of the fish stocks and reviews the need for species specific management plans for the major commercial important fish species of Lake Victoria (Nile perch, Nile tilapia, dagaa and haplochromines). Methods • Fisheries dependent – Frame surveys – Catch assessment surveys • Fisheries independent – Acoustic – Bottom trawl Biomass and relative abundance • Total biomass from the surveys 3500 remained fairly stable over time. -
The End of the Holocene Humid Period in the Central Sahara and Thar Deserts: Societal Collapses Or New Opportunities? Andrea Zerboni1, S
60 SCIENCE HIGHLIGHTS: CLIMATE CHANGE AND CULTURAL EVOLUTION doi: 10.22498/pages.24.2.60 The end of the Holocene Humid Period in the central Sahara and Thar deserts: societal collapses or new opportunities? Andrea Zerboni1, S. biagetti2,3,4, c. Lancelotti2,3 and M. Madella2,3,5 The end of the Holocene Humid Period heavily impacted on human societies, prompting the development of new forms of social complexity and strategies for food security. Yearly climatic oscillations played a role in enhancing the resilience of past societies. The Holocene Humid Period or Holocene settlements (Haryana, India), show a general changes in settlement pattern, rather than full- climatic Optimum (ca. 12–5 ka bP), in its local, trend towards desertification and higher fledged abandonment. monsoon-tuned variants of the African Humid evapotranspiration between 5.8 and 4.2 ka bP, Period (DeMenocal et al. 2000; Gasse 2000) followed by an abrupt increase in δ18O values In the SW Fazzan, the transition from the Late and the period of strong Asian southwest (or and relative abundance of carbonates, indic- Pastoral (5-3.5 ka bP) to the Final Pastoral summer) monsoon (Dixit et al. 2014), is one ative of a sudden decrease in Indian summer (3.5-2.7 ka bP) marks the ultimate adaptation of the best-studied climatic phases of the monsoon precipitations (Dixit et al. 2014). to hyperarid conditions and, later, the rise Holocene. Yet the ensuing trend towards arid- of the Garamantian kingdom (2.7-1.5 ka bP; ity, the surface processes shaping the pres- Aridification and cultural processes Mori et al. -
Rice Lake Nature Area
Rice Lake Nature Area Location: 4120 Bassett Creek Drive Nature Area Size: 9.23 Acres Description The Rice Lake Nature Area is located along the north side of Bassett Creek Drive. The nature area is within a residential neighborhood, although the woods and wetland provide more seclusion than expected for a small urban nature area. Access to the park is through a pedestrian bridge crossing of Bassett Creek, which flows from west to east. In this reach, Bassett Creek is within an incised channel and some bank erosion is present. The creek is bordered by mixed hardwood floodplain forest and hardwood swamp. Reed canary grass is present where there is sufficient clearing, but the understory can be sparse due to heavy shading. Tree removal would likely generate a flush of reed canary grass Rice Lake Nature Area can be accessed by walking an aggregate path, and a boardwalk leading to a floating dock. South Rice Pond, sometimes referred to as Rice Lake, is a shallow basin, with a wide emergent marsh fringe. Small, shallow ponds and lakes like South Rice, are somewhat unique, as they are successionally proceeding from deeper open water to wetland. That natural process can be observed from the Rice Lake Nature Area, by observing the existing habitat and surrounding areas. The Rice Lake Nature Area provides a unique opportunity to provide an unobstructed view of South Rice Pond. Because the park is dominated by wetland, access is limited to a raised trail and boardwalk. Forest and Woodlands The southern portion of the Rice Lake Nature Area is composed of a mixture of floodplain forest and hardwood swamp. -
Decision Document Regarding Florida Department of Environmental Protection's Section 303(D) List Amendments for Basin Group
DECISION DOCUMENT REGARDING FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION’S SECTION 303(d) LIST AMENDMENTS FOR BASIN GROUP THREE Prepared by the Environmental Protection Agency, Region 4 Water Management Division May 12, 2010 Florida §303(d) List Decision Document May 12, 2010 Table of Contents I. Executive Summary 3 II. Statutory and Regulatory Background 6 A. Identification of Water Quality Limited Segments (WQLSs) for Inclusion on the Section 303(d) List 6 B. Consideration of Existing and Readily Available Water Quality-Related Data and Information 6 C. Priority Ranking 7 III. Analysis of the Florida Department of Environmental Protection’s Submission 7 A. Florida’s Group Three 2010 Update 8 1. Florida’s Water Quality Standards and Section 303(d) List Development 8 2. List Development Methodology and Data Assessment 10 3. Public Participation Process 11 4. Consideration of Existing and Readily Available Water Quality-Related Data and Information 12 B. Review of FDEP’s Identification of Waters 14 1. Review of FDEP’s Data Guidelines 15 2. No Pollutant Identified for Impairment 18 3. Aquatic Life Use Impairment 18 4. Primary and Secondary Recreational Use Support 23 5. Fish and Shellfish Consumption Use Support 24 6. Drinking Water Use Support and Protection of Human Health 25 1 Florida §303(d) List Decision Document May 12, 2010 C. Section 303(d) List of Impaired Waters 26 1. FDEP’s Addition of Water Quality Limited Segments 26 2. Section 303(d) List Delistings 26 3. Other Pollution Control Requirements 27 4. EPA Identified Waters 30 5. Priority Ranking and Targeting 30 IV. -
Per___1. Based on the Evidence, I Believe That the Lake
Sample: Scientific Argument NAME _________________ Per___________ 1. Based on the evidence, I believe that the lake _evaporated___. I believe this due to the evidence on card B, C and D 2. On Card B it states, “In the region where the lake is found, planetary geologists have not yet observed any summer temperatures low enough to freeze methane” This is important because This evidence refutes that the lake froze. If the temperature did not get low enough to freeze, it could not have frozen. The only other option would be that the lake evaporated 2. On Card D it states, “Summer days have more hours of sunlight. Therefore, more energy is transferred to the lake in summer than any other season. This is important because If energy is transferred into the lake, this will cause the temperature of the lake to rise. If the temperature rises, there will be more kinetic energy causing the molecules to move faster. With enough energy, evaporation can occur. With more sunlight in summer, there are more hours for the energy to enter into the lake than any other season. 2. On Card C it states, “Summer started in 2002, the lake was there in 2007, there was no lake in 2009, fall started in 2010. Seasons on Titan are just over 7 years long. This is important because Titan is cold, even in the summer, because it’s so far away from the Sun. Even though it’s cold, it is a very long summer. Summer started in 2002 and the lake was there in 2007. -
Sources & Loads of Nitrate to the Wekiva River System
Sources & loads of nitrate to the wekiva river system Preliminary assessment Florida Department Mactec St. johns river of Environmental engineering and water Management Protection consulting district WekivaWekiva basinbasin nitratenitrate sourcingsourcing studystudy • Special legislative appropriation to Florida Dept. of Environmental Protection in 2006 ($250,000) • The Department contracted with St. Johns River Water Management District to implement a “Phase 1” assessment** using existing data and models (max. of $100,000) • SJRWMD used the services of their contractor - MACTEC Engineering and Consulting (Gainesville, FL) • Deficiencies identified in Phase 1 would be addressed as part of a follow-up Phase 2 effort ** Constraints: report ready by start of 2007 Session & available for Florida Dept. of Health to use MactecMactec taskstasks (developed in scope of work) • Obtain, review and integrate existing data and models • Conduct “desk-top” (i.e., “planning level”) inventory of potential sources of nitrate loading to surface and ground waters • Review & summarize literature on nitrate loading to surface and ground waters from land uses in the Wekiva basin • Develop preliminary nitrate budget for the basin (“pie chart”) • Develop preliminary recommendations for nitrate load reduction strategies • Develop recommendations for follow-up work (Phase 2) • Produce report summarizing the above efforts Study area Surface was the Basin “wekiva basin” • Surface water drainage and Springshed “springshed” • Most technically defensible • Needed for future modeling efforts • Needed for Total Max. Daily Load development Wekiva Study Area WekivaWekiva basinbasin nitrogennitrogen sourcingsourcing studystudy Data sources: • SJRWMD land use/land cover data (1999 & 2004) • East Central Florida Groundwater Model (SJRWMD) – recharge estimates • Wekiva Study Area stormwater model (WMM) • Approx. -
The Distribution and Volume of Titan's Hydrocarbon Lakes and Seas. A. G
45th Lunar and Planetary Science Conference (2014) 2341.pdf The Distribution and Volume of Titan’s Hydrocarbon Lakes and Seas. A. G. Hayes1, R. J. Michaelides1, E. P. 2 3 4 5 2 6 1 Turtle , J. W. Barnes , J. M. Soderblom , M. Mastrogiuseppe , R. D. Lorenz , R. L. Kirk , and J. I. Lunine , 1Astronomy Department, Cornell University, Ithaca NY, [email protected]; 2Johns Hopkins Applied Physics Lab, Laurel MD; 3Physics Department, University of Idaho, Moscow ID; 4Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambrige MA; 5Università La Sapienza, Italy; 6USGS Astrogeology Center, Flagstaff AZ Abstract: We present a complete map of Titan’s polar pressions [1,2]. Collectively, these features account for lacustrine features, at 1:100,000 scale, using a combi- ~1.1% of Titan’s globally observed surface area, while natio of images acquired using the RADAR, VIMS, Kraken, Ligeia, and Punga Maria account for ~80% of and ISS instruments onboard the Cassini spacecraft. all filled lake features by area. The vast majority of Synthetic Aperture Radar (SAR) images are used to filled lakes exist in the Northern hemisphere, taking up define morphologic borders while infrared images 12% of the area poleward of 55° as opposed to 0.3% in from ISS and VIMS are used to determine state of liq- the south (Figure 1). This dichotomy has been attribut- uid-fill. In addition, liquid volume estimates are de- ed to orbitally driven variations in solar insolation, rived from SAR observations using a two-layer model analogous to Earth’s Croll-Milankovich cycles [3]. calibrated by recent time-of-flight bathymetry meas- Until recently, it was unknown how many of the urements of Ligeia Mare. -
The 2019–2020 Rise in Lake Victoria Monitored from Space: Exploiting the State-Of-The-Art GRACE-FO and the Newly Released ERA-5 Reanalysis Products
sensors Article The 2019–2020 Rise in Lake Victoria Monitored from Space: Exploiting the State-of-the-Art GRACE-FO and the Newly Released ERA-5 Reanalysis Products Mehdi Khaki 1 and Joseph Awange 2,* 1 School of Engineering, University of Newcastle, Callaghan 2308, Australia; [email protected] 2 School of Earth and Planetary Sciences, Spatial Sciences, Curtin University, Perth 6102, Australia * Correspondence: [email protected] Abstract: During the period 2019–2020, Lake Victoria water levels rose at an alarming rate that has caused various problems in the region. The influence of this phenomena on surface and subsurface water resources has not yet been investigated, largely due to lack of enough in situ measurements compounded by the spatial coverage of the lake’s basin, incomplete/inconsistent hydrometeorologi- cal data, and unavailable governmental data. Within the framework of joint data assimilation into a land surface model from multi-mission satellite remote sensing, this study employs the state-of-art Gravity Recovery and Climate Experiment follow-on (GRACE-FO) time-variable terrestrial water storage (TWS), newly released ERA-5 reanalysis, and satellite radar altimetry products to understand the cause of the rise of Lake Victoria on the one hand, and the associated impacts of the rise on the total water storage compartments (surface and groundwater) triggered by the extreme climatic event on the other hand. In addition, the study investigates the impacts of large-scale ocean–atmosphere indices on the water storage changes. The results indicate a considerable increase in water storage over the past two years, with multiple subsequent positive trends mainly induced by the Indian Citation: Khaki, M.; Awange, J. -
Final Report an EVALUATION of the APPLICABILITY of UPLAND
Final Report AN EVALUATION OF THE APPLICABILITY OF UPLAND BUFFERS FOR THE WETLANDS OF THE WEKIVA BASIN Mark T. Brown and Joseph M. Schaefer, Principal Investigators with K. H. Brandt, S. J. Doherty, C. D. Dove, J. P. Dudley, D. A. Eifler, L. D. Harris, R. F. Noss, and R. W. Wolfe October, 1987 Center for Wetlands University of Florida Gainesville, Florida 32611 ( 904) 392 -2424 Acknowledgements The authors wish to express their appreciation to the staff of the Center For Wetlands, for their dedication and service way beyond the call of duty. Their attitude made completion of this report so much easier. Specifically, Jenny Carter, Staff Assistant, coordinated personnel and somehow managed to get the report finalized under difficult odds. Linda J. Crowder processed all the words over and over again as we edited and polished. Carol Cox proofread each draft. Stephen Roguski, our expert draftsperson, drafted the figures. Karla Brandt not only helped with research and writing, but did a fantastic job of final editing. Steven Tennenbaum devoted two days to derivations of the Theis Equation. We thank you for your energy. Ms. Sidney Brinson, spent a day in the field with the authors explaining the Districts methodology for wetlands determination. Staff from the Florida Department of Natural Resources, especially Ms. Deborah Shelly, provided support and transportation, Glenn Lowe, Chief Environmental Specialist a the St. Johns River Water Management District was project manager for the District and was extremely patient and effective in his support. ii Preface This document is the product of a contract between the St. -
Madison Lake (07-0044) Blue Earth County, Minnesota
Sentinel Lake Assessment Report Madison Lake (07-0044) Blue Earth County, Minnesota Minnesota Pollution Control Agency Water Monitoring Section Lakes and Streams Monitoring Unit & Minnesota Department of Natural Resources Section of Fisheries August 2010 Minnesota Pollution Control Agency 520 Lafayette Road North Saint Paul, MN 55155-4194 http://www.pca.state.mn.us 651-296-6300 or 800-657-3864 toll free TTY 651-282-5332 or 800-657-3864 toll free Available in alternative formats Contributing Authors Matt Lindon MPCA Ray Valley and Scott Mackenthun MDNR Editing Steve Heiskary & Dana Vanderbosch, MPCA Peter Jacobson, MDNR Sampling Matt Lindon, MPCA Jacquelyn Bacigalupi, Marc Bacigalupi, Marcus Beck, Craig Berberich, Nathan Burkhart, Tyler Fellows, Corey Geving, John Hoxmeier, Seth Luchau, Jason Rhoten, Kim Strand, Ray Valley, MDNR Patrice Johnson, Susie Jedlund, Master Naturalist Program Curt Kloss, Citizen Lake Monitoring Program Volunteer Mary Buschkowsky and Frank McCabe, Volunteer Ice out data wq-2slice07-0044 The MPCA is reducing printing and mailing costs by using the Internet to distribute reports and information to wider audience. For additional information, see the Web site: www.pca.state.mn.us/water/lakereport.html This report was printed on recycled paper manufactured without the use of elemental chlorine (cover: 100% post-consumer; body: 100% post-consumer) 2009 Sentinel Lake Assessment of Minnesota Pollution Control Agency and Madison Lake in Blue Earth County Minnesota Department of Natural Resources i Table of Contents List