CHAPTER I INTRODUCTION 1 1.1 Research Background 1 1.2 Problem Statement 3 1.3 Objectives of Study 4 1.4 Scopes of Work 4
Total Page:16
File Type:pdf, Size:1020Kb
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UTHM Institutional Repository i WATER RETICULATION MODEL FOR TAMAN MAJU, PARIT RAJA OTMAN MOHAMED O. ELOJALI This thesis is presented as to fulfill part of the requirement for the award of the Master of Civil Engineering Faculty of Civil and Environmental Engineering Universiti Tun Hussein Onn Malaysia MAY, 2011 v ABSTRAK Satu model numerikal telah dihasilkan untuk menilai kuantiti kehilangan turus tenaga dalam jaringan pengagihan air di Taman Maju, Parit Raja, Johor. Sebuah pengiraan numerikal mempunyai kelebihan berbanding sebuah pengiraan manual apabila menganalisa sebuah jaringan pengagihan yang kompleks. Bahasa pengaturcaraan yang digunakan dalam kajian ini ialah Microsoft Visual Basic 6.0. Kaedah Hardy- Cross dipilih untuk mengira jumlah kehilangan turus tenaga yang berlaku dalam jaringan pengagihan air gelung Taman Maju. Jenis paip yang digunapakai dalam jaringan pengagihan air Taman Maju ialah jenis unplasticised polyvinyl chloride (uPVC) dengan pemalar kekasaran k = 0.0015 mm. Oleh kerana Taman Maju meliputi perumahan teres, permintaan air ialah 1360 liter/unit/hari. Tiga gelung rangkaian telah dipertimbangkan, iaitu gelung A, B dan C untuk sistem retikulasi Taman Maju. Kadar alir akhir dalam setiap paip telah diperolehi. Model ini berguna untuk mengurangkan tempoh masa yang digunakan dalam pengiraan kadar alir yang telah didapati berada dalam keperluan rekabentuk. Jika perbandingan dibuat di antara pengiraan manual, akan terdapat sedikit perbezaan. Hasil akhir adalah berbeza kerana bilangan tempat perpuluhan yang ditetapkan dalam pengiraan manual dan model adalah berbeza. vi ABSTRACT A numerical model is developed to quantify energy head losses occurred in the water distribution network of Taman Maju, Parit Raja, Johor. A numerical computation has the advantage over a manual computation when analyzing a complex distribution network. The programming language used in this study is the Microsoft Visual Basic 6.0. Hardy-Cross method is selected to calculate the total energy head loss incurred in the looped water distribution network of Taman Maju. The type of pipe used in the water distribution network of Taman Maju is the unplasticised polyvinyl chloride (uPVC) type with the roughness coefficient k = 0.0015 mm. Since Taman Maju consists of terrace houses, the water demand is 1360 litres/unit/day. Three loop networks are considered, namely loop A, B and C for Taman Maju reticulation system. The final flow rate in each pipe has been obtained. This model is helpful in reducing the period of time to calculate the flow rate which is found to be within the piping system design requirement. If comparison is made between the manual calculation, it will definitely shows some difference. The final result will be different because the decimal places fixed are different in manual and model. vii CONTENTS TITLE i CONFESSION ii DEDICATION iii ACKNOWLEDGMENT iv ABSTRAK v ABSTRACT vi CONTENTS vii LIST OF SYMBOLS AND ABBREVIATIONS x LIST OF TABLES xi LIST OF FIGURES xii CHAPTER I INTRODUCTION 1 1.1 Research Background 1 1.2 Problem Statement 3 1.3 Objectives of Study 4 1.4 Scopes of Work 4 CHAPTER II LITERATURE REVIEW 2.1 History of Water Supply and Distribution 7 2.2 Water Supply in Malaysia 12 2.3 Water Supply in Johor 16 2.4 Water Distribution System 16 2.5 Water Reticulation System 18 2.6 Water Demand 22 2.6.1 Industries 22 viii 2.6.2 Residential 23 2.7 Types of Waterworks Pipe 24 2.8 Design Velocity and Hydraulic Gradient 29 2.9 Head Losses in Pipe 29 2.9.1 Friction Loss in Pipe 30 2.9.1.1 Friction Factor f 32 2.9.2 Minor Losses in Pipe 34 2.9.2.1 Loss of Energy Heat at Entrance 35 2.9.2.2 Loss of Energy Heat at Submerged 35 Discharge 2.9.2.3 Loss of Energy Head due to Pipe 36 Contraction 2.9.2.4 Loss of Energy Head due to Pipe 37 Expansion 2.9.2.5 Loss of Energy Head due to Pipe 38 Fittings 2.9.2.6 Loss of Energy Head in Bends and 39 Elbows 2.10 Flow Estimation 40 2.10.1 Hardy-Cross Method 40 2.11 Microsoft Visual Basic 6.0 41 2.11.1 Command Button Control 43 2.11.2 Label Control 44 2.11.3 Text Box Control 44 2.11.4 Option Control Button 45 2.11.5 Frame Control 46 2.11.6 Combo Box Control 46 CHAPTER III METHODOLOGY 47 3.1 Study Methodology 47 3.2 Microsoft Visual Basic Environment 50 3.2.1 Design Mode 51 3.3 Hardy-Cross Analysis Method 57 ix 3.3.1 Principles of Hardy-Cross Analysis Method 57 3.3.2 Balancing Pressure and Flow Rate 58 3.3.3 Reynolds Number Re 59 3.3.4 Pipe Friction Coefficient 59 3.3.5 Friction Loss hf 60 3.3.6 Head Losses 61 CHAPTER IV RESULTS AND DISCUSSIONS 62 4.1 Study Area 62 4.2 Initial Data for Case Study 65 4.2.1 Flow in Pipes 65 4.2.2 Decision Analysis of Darcy-Weisbach 73 4.2.3 Decision Analysis of Hazen-Williams 86 4.3 Result Interface 91 CHAPTER V CONCLUSIONS AND RECOMMENDATIONS 92 5.1 Summary of Study 92 5.2 Conclusions 93 5.3 Recommendations 93 5.3.1 Improving and Upgrading Model 93 5.3.2 Developing New Model 94 REFERENCES 95 x LIST OF SYMBOLS AND ABBREVIATIONS a acceleration of fluid flow A cross-sectional area of fluid flow C Hazen-Williams coefficient D diameter of pipe Q correction for assumed flow rate e surface roughness of pipe f friction factor F inertial force g gravitational acceleration hf frictional head loss K Hardy Cross coefficient or head loss coefficient L length of pipe m mass of fluid υ kinematic viscosity of fluid Q flow rate Qa assumed flow rate Q corrected flow rate Re Reynolds number ρ density of fluid V velocity of flow xi LIST OF TABLES 2.1 General timeline of water supply and its distribution 7 2.2 History of Malaysia water supply system 12 2.3 Advantages and disadvantages of types of water supply distribution 18 system 2.4 Industrial water demand guideline by the Malaysian Water Association 23 2.5 Residential water demand by the Malaysian Water Association 23 2.6 Advantages and disadvantages of water supply pipe materials 24 2.7 Hazen-Williams roughness coefficient for pipes 31 2.8 Roughness e of pipe in mm 34 2.9 Loss coefficients due to sudden contraction of pipe 36 2.10 Values of loss factors for pipe fittings 39 2.11 The equivalent Visual Basic constants for combo box controller 46 4.1 Analyses for loop (A) 67 4.2 Case study data for loop (B) 69 4.3 Case study data for loop (C) 73 4.4 Analysis result for loop (A) 85 4.5 Analysis result for loop (B) 85 4.6 Analysis result for loop (C) 86 4.7 Analysis result for loop (A) 89 4.8 Analysis result for loop (B) 89 4.9 Analysis result for loop (C) 90 xii LIST OF FIGURES 1.1 Head losses incurred in the distribution pipeline reduces the 2 pressure in the system 1.2 Layout of water reticulation system of Taman Maju, Parit Raja 6 2.1 Malaysian water authorities 15 2.2 Three types of water supply distribution systems 17 2.3 Distribution system feeds: (a)-(b) single main feed, and (c) use of ring 20 main 2.4 Moody chart 32 2.5 Loss coefficient K due to flow entrance into pipe 35 2.6 Loss of energy head when pipe discharges fluid into filled reservoir 35 2.7 Pipe contraction 36 2.8 Flow expansion 37 2.9 Values of K can be obtained for various cone angle 38 2.10 Loss coefficient K due to bends and elbows 39 2.11 Controller at operating box (toolbox) 45 3.1 Methodology of the development of water distribution network numerical 48 model for Taman Maju, Parit Raja, Johor 3.2 Plan of studies for the head loss model of water distribution for Taman 49 Maju, Parit Raja using Visual Basic 6.0 3.3 The main window 52 3.4 The form window 53 3.5 Properties of the form and output screen can be set on the properties form 54 3.6 Form layout window 55 3.7 Project window 55 xiii 3.8 Application of the control button 56 4.1 Location of Taman Maju (also known as Taman Maju Baru), Parit Raja 62 4.2 The water distribution layout for Taman Maju, Parit Raja 64 4.3 User interface developed for Taman Maju water reticulation system 91 CHAPTER 1 INTRODUCTION 1.0 Research Background Renewable sources of fresh water on the earth’s surface are limited and irregularly distributed in space and time. There are about 1360 million km3 of water on the surface of the earth. More than 97% of this volume comes from the oceans or seas. The remainder of about 37 million km3 is fresh water (Eisenberg and Kauzmann, 1969). However, most of the fresh water on the earth is of little use because it is in the forms of ice-caps and glaciers. Approximately 8 million km3 of the water is stored in relatively inaccessible groundwater and about 0.126 million km3 are contained in lakes, reservoirs and streams (Franks, 1972). In recent years, the ever-increasing growth in the population of urban areas and the desire for security and a higher standard of living have attracted the attention on problems related to water economy.