Delaunay Triangulation of Manifolds Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh
Delaunay Triangulation of Manifolds Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh To cite this version: Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh. Delaunay Triangulation of Manifolds. Founda- tions of Computational Mathematics, Springer Verlag, 2017, 45, pp.38. 10.1007/s10208-017-9344-1. hal-01509888 HAL Id: hal-01509888 https://hal.inria.fr/hal-01509888 Submitted on 18 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Delaunay triangulation of manifolds Jean-Daniel Boissonnat ∗ Ramsay Dyer y Arijit Ghosh z April 18, 2017 Abstract We present an algorithm for producing Delaunay triangulations of manifolds. The algorithm can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. Given a set of sample points and an atlas on a compact manifold, a manifold Delaunay complex is produced for a perturbed point set provided the transition functions are bi-Lipschitz with a constant close to 1, and the original sample points meet a local density requirement; no smoothness assumptions are required. If the transition functions are smooth, the output is a triangulation of the manifold. The output complex is naturally endowed with a piecewise flat metric which, when the original manifold is Riemannian, is a close approximation of the original Riemannian metric.
[Show full text]