Map, Tables, and Summary of Fossil and Isotopic Age Data, Mount Hayes Quadrangle, Eastern Alaska Range, Alaska
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Department of the Interior Reports of The
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY REPORTS OF THE ALASKA DIVISION OF GEOLOGICAL AND GEOPHYSICAL SURVEYS AND PREDECESSOR AGENCIES, 1913-1973, INDEXED BY QUmRANGLE BY Edward H. Cobb Open-f ile report 74- 209 1974 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards NOTE NOTE NOTE Since this index was prepared 18 open-file reports of the Alaska Division of Geological and Geophysical Surveys have been withdrawn, consolidated, revised, or assigned different numbers. References to these reposts should be deleted from thes index. The report numbers are: 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 37, 39, and 40. They are listed under the following quadrangles: Afognak Mar shall Ambler Mves McCarthy Anchorage Medf ra Baird Inlet Mt. Fairweather Bendeleben Mt. St. Elias Bering Glacier Nabesna Bethel Nunivak Island Big Delta Port Moller Cape Mendenhall Rubs Charley River St. Michael Chignik Sitka Coxdova Survey Pass Eagle Sutwik Island Hooper Bay Talkeetna ICY BY Talkeetna Mountains ILiamna Trinity Islands Kaguyak Tyonek Karluk Ugashik Kodiak Valde z Kwiguk Yakutat Contents Page Introduction ......................................................... Alaska - General ..................................................... Quadrangle index ..................................................... Adak quadrarLgle ................................................. Afognak quadrangle .............................................. Ambler River quadrangle ........................................ -
Program, Elěadáskivonatok, Kirándulásvezetě 7. Magyar Ěslénytani Vándorgyķlés
PROGRAM, ELěADÁSKIVONATOK, KIRÁNDULÁSVEZETě 7. MAGYAR ěSLÉNYTANI VÁNDORGYĶLÉS 2004. MÁJUS 6–8. BEREMEND A MAGYARHONI FÖLDTANI TÁRSULAT ěSLÉNYTANI-RÉTEGTANI SZAKOSZTÁLYA RENDEZÉSÉBEN 7. MAGYAR ėSLÉNYTANI VÁNDORGYĥLÉS PROGRAMJA BEREMEND, 2004. MÁJUS 6–8. ELėADÓÜLÉS – 1. NAP (CSÜTÖRTÖK) DélelĘtt – LevezetĘ elnök: Vörös Attila 11:30 Heindl József Köszöntés és megnyitó (Beremend polgármestere) Pálfy József 11:40 – 12:00 ėsi Attila NövényevĘ krokodil a magyarországi felsĘ-krétából (Bakony) 12:00 – 12:20 Pászti Andrea Rhenanoperca minuta Gaudant et Micklich (Pisces, Perciformes) a középsĘ-eocén Messeli Formációból (Messel, Németország) 12:20 – 12:40 Gál Erika FelsĘ pleisztocén madárcsontleletek a Kálvária 4. sz. barlangból 12:40 – 13:00 DezsĘ József, A beremendi SzĘlĘhegy hasadékai és kitöltéseik a Tóth Judit morfológiai megfigyelések tükrében 13:00 – 14:30 EBÉDSZÜNET, POSZTEREK Délután 1. – LevezetĘ elnök: Galácz András 14:30 – 15:00 Vörös Attila ÜledékképzĘdési epizódok és faunaváltozások a villányi jura rétegsorban 15:00 – 15:20 Görög Ágnes A mecseki foltos márga foraminiferái 15:20 – 15:40 Szabó János Magyarországi terrének jura Ęsföldrajzi helyzete a Tethys és a kapcsolódó tengerek új gastropoda- faunisztikai eredményeinek tükrében 15:40 – 16:00 Dulai Alfréd, Lobothyris ? subgregaria: egy kora-jura Elvis faj a Pálfy József Nyugati-Tethys területén 16:00 – 16:30 KÁVÉSZÜNET Délután 2. – LevezetĘ elnök: Dulai Alfréd 16:30 – 16:50 FĘzy István, Négy eltĦnt réteg nyomában. Milyen korú volt az Nico M.M. Janssen ammoniteszes pad a zirci Márványbányában? 16:50 – 17:10 Galácz András Paleocén Nautiloideák Líbiából 17:10 – 17:30 Katona Lajos Pannóniai puhatestĦ faunák a Balaton-felvidék feltárásaiból Este – Nyilvános elĘadás 17:45 – 19:00 Kordos László Beremend és a magyar gerinces paleontológia 19:30 VACSORA (a Zokogó Majom étteremben) 7. -
Los Cien Montes Más Prominentes Del Planeta D
LOS CIEN MONTES MÁS PROMINENTES DEL PLANETA D. Metzler, E. Jurgalski, J. de Ferranti, A. Maizlish Nº Nombre Alt. Prom. Situación Lat. Long. Collado de referencia Alt. Lat. Long. 1 MOUNT EVEREST 8848 8848 Nepal/Tibet (China) 27°59'18" 86°55'27" 0 2 ACONCAGUA 6962 6962 Argentina -32°39'12" -70°00'39" 0 3 DENALI / MOUNT McKINLEY 6194 6144 Alaska (USA) 63°04'12" -151°00'15" SSW of Rivas (Nicaragua) 50 11°23'03" -85°51'11" 4 KILIMANJARO (KIBO) 5895 5885 Tanzania -3°04'33" 37°21'06" near Suez Canal 10 30°33'21" 32°07'04" 5 COLON/BOLIVAR * 5775 5584 Colombia 10°50'21" -73°41'09" local 191 10°43'51" -72°57'37" 6 MOUNT LOGAN 5959 5250 Yukon (Canada) 60°34'00" -140°24’14“ Mentasta Pass 709 62°55'19" -143°40’08“ 7 PICO DE ORIZABA / CITLALTÉPETL 5636 4922 Mexico 19°01'48" -97°16'15" Champagne Pass 714 60°47'26" -136°25'15" 8 VINSON MASSIF 4892 4892 Antarctica -78°31’32“ -85°37’02“ 0 New Guinea (Indonesia, Irian 9 PUNCAK JAYA / CARSTENSZ PYRAMID 4884 4884 -4°03'48" 137°11'09" 0 Jaya) 10 EL'BRUS 5642 4741 Russia 43°21'12" 42°26'21" West Pakistan 901 26°33'39" 63°39'17" 11 MONT BLANC 4808 4695 France 45°49'57" 06°51'52" near Ozero Kubenskoye 113 60°42'12" c.37°07'46" 12 DAMAVAND 5610 4667 Iran 35°57'18" 52°06'36" South of Kaukasus 943 42°01'27" 43°29'54" 13 KLYUCHEVSKAYA 4750 4649 Kamchatka (Russia) 56°03'15" 160°38'27" 101 60°23'27" 163°53'09" 14 NANGA PARBAT 8125 4608 Pakistan 35°14'21" 74°35'27" Zoji La 3517 34°16'39" 75°28'16" 15 MAUNA KEA 4205 4205 Hawaii (USA) 19°49'14" -155°28’05“ 0 16 JENGISH CHOKUSU 7435 4144 Kyrghysztan/China 42°02'15" 80°07'30" -
Geologic Maps of the Eastern Alaska Range, Alaska, (44 Quadrangles, 1:63360 Scale)
Report of Investigations 2015-6 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units by Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner Southeastern Tanana Basin Southern Yukon–Tanana Upland and Terrane Delta River Granite Jarvis Mountain Aurora Peak Creek Terrane Hines Creek Fault Black Rapids Glacier Jarvis Creek Glacier Subterrane - Southern Yukon–Tanana Terrane Windy Terrane Denali Denali Fault Fault East Susitna Canwell Batholith Glacier Maclaren Glacier McCallum Creek- Metamorhic Belt Meteor Peak Slate Creek Thrust Broxson Gulch Fault Thrust Rainbow Mountain Slana River Subterrane, Wrangellia Terrane Phelan Delta Creek River Highway Slana River Subterrane, Wrangellia Terrane Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 2015 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner COVER: View toward the north across the eastern Alaska Range and into the southern Yukon–Tanana Upland highlighting geologic, structural, and geomorphic features. View is across the central Mount Hayes Quadrangle and is centered on the Delta River, Richardson Highway, and Trans-Alaska Pipeline System (TAPS). Major geologic features, from south to north, are: (1) the Slana River Subterrane, Wrangellia Terrane; (2) the Maclaren Terrane containing the Maclaren Glacier Metamorphic Belt to the south and the East Susitna Batholith to the north; (3) the Windy Terrane; (4) the Aurora Peak Terrane; and (5) the Jarvis Creek Glacier Subterrane of the Yukon–Tanana Terrane. -
Annual Climate Monitoring Report for Denali National Park and Preserve, Wrangell-St-Elias National Park and Preserve and Yukon-Charley Rivers National Preserve
Annual Climate Monitoring Report for Denali National Park and Preserve, Wrangell-St-Elias National Park and Preserve and Yukon-Charley Rivers National Preserve Pamela J. Sousanes Denali National Park and Preserve P.O. Box 9 Denali Park, AK 99755 2005 Central Alaska Network NPS Report Series Number: NPS/AKCAKN/NRTR-2006/0xx Project Number: CAKN-xxxxxx Funding Source: Central Alaska Network Denali National Park and Preserve Draft 2005 Annual Climate Monitoring Report – March 2006 Central Alaska Inventory and Monitoring Network File Name: Sousanes_P_2006_ClimateMonitoringCAKN_0315.doc Recommended Citation: Sousanes, Pamela J. 2006. Annual Climate Monitoring Report for Denali National Park and Preserve, Wrangell-St. Elias National Park and Preserve, and Yukon- Charley Rivers National Preserve. NPS/AKCAKN/NRTR-2006/xx. National Park Service. Denali Park, AK. 75 pg. Acronyms: I&M Inventory and Monitoring CAKN Central Alaska Network DENA Denali National Park and Preserve WRST Wrangell-St. Elias National Park and Preserve YUCH Yukon-Charley Rivers National Preserve NPS National Park Service WRCC Western Regional Climate Center NRCS Natural Resources Conservation Service NWS National Weather Service RAWS Remote Automated Weather Station NCDC National Climatic Data Center AWOS Automated Weather Observation Station SNOTEL Snow Telemetry ii Draft 2005 Annual Climate Monitoring Report – March 2006 Central Alaska Inventory and Monitoring Network Table of Contents EXECUTIVE SUMMARY............................................................................................. -
Changes in Geyser Eruption Behavior and Remotely Triggered Seismicity in Yellowstone National Park Produced by the 2002 M 7.9 Denali Fault Earthquake, Alaska
Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7.9 Denali fault earthquake, Alaska S. Husen* Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA R. Taylor National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming 82190, USA R.B. Smith Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA H. Healser National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming 82190, USA ABSTRACT STUDY AREA Following the 2002 M 7.9 Denali fault earthquake, clear changes in geyser activity and The Yellowstone volcanic field, Wyoming, a series of local earthquake swarms were observed in the Yellowstone National Park area, centered in Yellowstone National Park (here- despite the large distance of 3100 km from the epicenter. Several geysers altered their after called ‘‘Yellowstone’’), is one of the larg- eruption frequency within hours after the arrival of large-amplitude surface waves from est silicic volcanic systems in the world the Denali fault earthquake. In addition, earthquake swarms occurred close to major (Christiansen, 2001; Smith and Siegel, 2000). geyser basins. These swarms were unusual compared to past seismicity in that they oc- Three major caldera-forming eruptions oc- curred simultaneously at different geyser basins. We interpret these observations as being curred within the past 2 m.y., the most recent induced by dynamic stresses associated with the arrival of large-amplitude surface waves. 0.6 m.y. ago. The current Yellowstone caldera We suggest that in a hydrothermal system dynamic stresses can locally alter permeability spans 75 km by 45 km (Fig. -
Mount Sanford…Errrr, Mount Jarvis. Wait, What?? Mount Who?? It Was Roughly Around Thanksgiving 2016 and the Time Had Come Fo
Mount Sanford…errrr, Mount Jarvis. Wait, what?? Mount Who?? It was roughly around Thanksgiving 2016 and the time had come for me to book my next IMG adventure. With two young children at home and no family close by, I had settled into a routine of doing a big climb every other year. This year was a bit different, as I normally book my major climbs around September for an April or May departure the following year. However, due to a Mt. Blackburn (Alaska) trip falling through, I had to book another expedition. In 2015, I was on an IMG team that summitted Mt. Bona from the north side, not the original plan (jot that down – this will become a theme in Alaska), and really enjoyed the solitude, adventure, physical challenge, small team, and lack of schedule the Wrangell & St Elias Mountains had to offer. So, I hopped on IMG’s website, checked out the scheduled Alaskan climb for 2017, which was Mt. Sanford, and peppered George with my typical questions. Everything lined up, so I completed the pile of paperwork (do I really have to sign another waiver?!?), sent in my deposit (still no AMEX, ugh…), set my training schedule, and started Googling trip reports about Mt. Sanford. Little did I know that READING about Mt. Sanford was the closest I would ever get to it! Pulling from my previous Alaskan climbing experience, I was better prepared for this trip than for Mt Bona in 2015. Due to our bush pilot’s inability to safely land us on the south side of Bona two years prior, we flew up, around, and over the mountain and landed on the north side. -
2020 January Scree
the SCREE Mountaineering Club of Alaska January 2020 Volume 63, Number 1 Contents Mount Anno Domini Peak 2330 and Far Out Peak Devils Paw North Taku Tower Randoism via Rosie’s Roost "The greatest danger for Berlin Wall most of us is not that our aim is too high and we Katmai and the Valley of Ten Thousand Smokes miss it, but that it is too Peak of the Month: Old Snowy low and we reach it." – Michelangelo JANUARY MEETING: Wednesday, January 8, at 6:30 p.m. Luc Mehl will give the presentation. The Mountaineering Club of Alaska www.mtnclubak.org "To maintain, promote, and perpetuate the association of persons who are interested in promoting, sponsoring, im- proving, stimulating, and contributing to the exercise of skill and safety in the Art and Science of Mountaineering." This issue brought to you by: Editor—Steve Gruhn assisted by Dawn Munroe Hut Needs and Notes Cover Photo If you are headed to one of the MCA huts, please consult the Hut Gabe Hayden high on Devils Paw. Inventory and Needs on the website (http://www.mtnclubak.org/ Photo by Brette Harrington index.cfm/Huts/Hut-Inventory-and-Needs) or Greg Bragiel, MCA Huts Committee Chairman, at either [email protected] or (907) 350-5146 to see what needs to be taken to the huts or repaired. All JANUARY MEETING huts have tools and materials so that anyone can make basic re- Wednesday, January 8, at 6:30 p.m. at the BP Energy Center at pairs. Hutmeisters are needed for each hut: If you have a favorite 1014 Energy Court in Anchorage. -
Bozeman Climbers Tackle Gan
BOZEMAN CLIMBERS TACKLE GANNETT PEAK TO BENEFIT U... http://chronicleoutdoors.com/2010/03/18/bozeman-climbers-to-tackle-w... Chronicle Outdoors Dedicated to outdoor adventure in Southwest Montana Home Photo Gallery Where Am I Contest About Contact .: This week's poll :. Fifteen years ago wolves were released into Yellowstone Park. They have since established range outside the park and been embroiled in controversy. Do you think their presence is appropriate? Yes, wolves are a native predator that help maintain a natural balance in the Greater Yellowstone Ecosystem. No way, wolves have depleted elk herds, killed sheep and cattle and caused conflict. They create more problems than they solve. Vote View Results .: Gallatin ational Forest Avalanche Report :. GNFAC Avalanche Advisory for Sun Mar 21, 2010 Good Morning. This is Eric Knoff with the Gallatin National Forest Avalanche Advisory issued on Sunday, March 21, at 7:30 a.m. Bountiful Table, in cooperation with the Friends of the Avalanche Center, sponsors today's advisory. This advisory does not apply to operating ski areas. Mountain Weather: A ridge of high pressure has stalled over southwest M […] .: Latest news from Montana Fish, Wildlife & Parks :. Wild Bison’s Future In Montana What is the future for wild bison in Montana? […] Three Bear Aware Meetings Planned For Front State wildlife officials are planning three community meetings in April to remind north central Montana residents to be bear aware. The meetings will begin at 7 p.m. and take place April 12, Simms high school; April 13, Marias River Electric Coop in Shelby; and April 14, Wolf Creek School. -
From the Western of the United
from the Western of the United GEOLOGICAL SURVEY P R® BES&lON AL PAPER 1057 Early Triassic Terebratulid Brachiopods from the Western Interior of the United States By PETER R. HOOVER GEOLOGICAL SURVEY PROFESSIONAL PAPER 1057 Description and illustration offive species of terebratulid brachiopods, and discussion of their distribution and developmental and evolutionary history UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1979 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Hoover, Peter R. Early Triassic Terebratulid Brachiopods from the Western Interior of the United States (Geological Survey Professional Paper 1057) Bibliography: p. 19 Includes index Supt. of Docs. No.: I 19:16:1057 1. Terebratulida, Fossil. 2. Paleontology Triassic. 3. Paleontology The West. I. Title. II. Series: United States Geological Survey Professional Paper 1057 QE797.T29H66 564'.8 77-608314 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03182-5 CONTENTS Page Page Systematic paleontology Continued Abstract ....................... 1 Family Dielasmatidae Continued Introduction .................... 1 Subfamily Dielasmatinae. Previous work................ 1 Rhaetina Waagen ..... Present study ................ 3 Family Terebratulidae ......... 9 Acknowledgments ............ 3 Subfamily Plectoconchiinae. 9 Fossil localities cited in this report. .... 3 Vex, n. gen. ......... 9 Stratigraphic setting of the brachiopods 4 Family Cryptonellidae ......... 11 Faunal relationships. .............. 6 Subfamily Cryptacanthiinae . 11 Biostratigraphic implications........ 6 Obnixia, n. gen. ...... 11 Systematic paleontology............ 7 Family Zeilleriidae ............ 17 Family Dielasmatidae.......... 7 Periallus, n. gen. ......... 17 Subfamily Zugmayeriinae . 7 References cited. ................. 19 Portneufia, n. gen. .... 7 Index ......................... 21 ILLUSTRATIONS [Plates follow index] PLATE 1. -
Alaska Range
Alaska Range Introduction The heavily glacierized Alaska Range consists of a number of adjacent and discrete mountain ranges that extend in an arc more than 750 km long (figs. 1, 381). From east to west, named ranges include the Nutzotin, Mentas- ta, Amphitheater, Clearwater, Tokosha, Kichatna, Teocalli, Tordrillo, Terra Cotta, and Revelation Mountains. This arcuate mountain massif spans the area from the White River, just east of the Canadian Border, to Merrill Pass on the western side of Cook Inlet southwest of Anchorage. Many of the indi- Figure 381.—Index map of vidual ranges support glaciers. The total glacier area of the Alaska Range is the Alaska Range showing 2 approximately 13,900 km (Post and Meier, 1980, p. 45). Its several thousand the glacierized areas. Index glaciers range in size from tiny unnamed cirque glaciers with areas of less map modified from Field than 1 km2 to very large valley glaciers with lengths up to 76 km (Denton (1975a). Figure 382.—Enlargement of NOAA Advanced Very High Resolution Radiometer (AVHRR) image mosaic of the Alaska Range in summer 1995. National Oceanic and Atmospheric Administration image mosaic from Mike Fleming, Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska. The numbers 1–5 indicate the seg- ments of the Alaska Range discussed in the text. K406 SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD and Field, 1975a, p. 575) and areas of greater than 500 km2. Alaska Range glaciers extend in elevation from above 6,000 m, near the summit of Mount McKinley, to slightly more than 100 m above sea level at Capps and Triumvi- rate Glaciers in the southwestern part of the range. -
Southcentral Alaska Stock
Revised: April 2014 NORTHERN SEA OTTER (Enhydra lutris kenyoni): Southcentral Alaska Stock STOCK DEFINITION AND GEOGRAPHIC RANGE Sea otters occur in nearshore coastal waters of the U.S. along the North Pacific Rim from the Aleutian Islands to California. The species is most commonly observed within the 40-meter (approximately 12.2 feet [ft]) depth contour because the animals require frequent access to benthic foraging habitat in subtidal and intertidal zones (Reidman and Estes 1990). Sea otters are not migratory and generally do not disperse over long distances, although movements of tens of kilometers (km) (tens of miles [mi]) are common (Garshelis and Garshelis 1984). Annual home range sizes of adult sea otters are relatively small, with male territories ranging from 4 to 11 square kilometers (km2) (approximately 10.5 to 28.5 square miles[mi2]) and adult female home ranges from a few to 24 km2 (approximately 62 mi2) (Garshelis and Garshelis 1984; Ralls et al. 1988; Jameson 1989). Due to their benthic foraging, sea otter distribution is largely limited by their ability to dive to the sea floor (Bodkin et al. 2004). 1 Figure 1. Approximate distribution and stock boundaries of northern sea otters in Alaska waters (shaded area). The spatial scale at which sea otter populations are managed remains an important, although largely unexplored issue (Bodkin and Ballachey 2010) deserving further study. Bodkin and Ballachey (2010) used models of sea otter mortality to show that range-wide reductions and extirpations during the commercial fur trade of the 18th and 19th centuries occurred not simply because of excessive harvest, but because the harvest was not allocated proportional to the abundance and distribution of sea otters.