Contributions from the Museum of Paleontology, University of Michigan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vertebral Morphology, Dentition, Age, Growth, and Ecology of the Large Lamniform Shark Cardabiodon Ricki
Vertebral morphology, dentition, age, growth, and ecology of the large lamniform shark Cardabiodon ricki MICHAEL G. NEWBREY, MIKAEL SIVERSSON, TODD D. COOK, ALLISON M. FOTHERINGHAM, and REBECCA L. SANCHEZ Newbrey, M.G., Siversson, M., Cook, T.D., Fotheringham, A.M., and Sanchez, R.L. 2015. Vertebral morphology, denti- tion, age, growth, and ecology of the large lamniform shark Cardabiodon ricki. Acta Palaeontologica Polonica 60 (4): 877–897. Cardabiodon ricki and Cardabiodon venator were large lamniform sharks with a patchy but global distribution in the Cenomanian and Turonian. Their teeth are generally rare and skeletal elements are less common. The centra of Cardabiodon ricki can be distinguished from those of other lamniforms by their unique combination of characteristics: medium length, round articulating outline with a very thick corpus calcareum, a corpus calcareum with a laterally flat rim, robust radial lamellae, thick radial lamellae that occur in low density, concentric lamellae absent, small circular or subovate pores concentrated next to each corpus calcareum, and papillose circular ridges on the surface of the corpus calcareum. The large diameter and robustness of the centra of two examined specimens suggest that Cardabiodon was large, had a rigid vertebral column, and was a fast swimmer. The sectioned corpora calcarea show both individuals deposited 13 bands (assumed to represent annual increments) after the birth ring. The identification of the birth ring is supported in the holotype of Cardabiodon ricki as the back-calculated tooth size at age 0 is nearly equal to the size of the smallest known isolated tooth of this species. The birth ring size (5–6.6 mm radial distance [RD]) overlaps with that of Archaeolamna kopingensis (5.4 mm RD) and the range of variation of Cretoxyrhina mantelli (6–11.6 mm RD) from the Smoky Hill Chalk, Niobrara Formation. -
Manta Or Mobula
IOTC-2010-WPEB-inf01 Draft identification guide IOTC Working Party on Ecosystems and Bycatch (WPEB) Victoria, Seychelles 27-30 October, 2010 Mobulidae of the Indian Ocean: an identification hints for field sampling Draft, version 2.1, August 2010 by Romanov Evgeny(1)* (1) IRD, UMR 212 EME, Centre de Recherche Halieutique Mediterraneenne et Tropicale Avenue Jean Monnet – BP 171, 34203 Sete Cedex, France ([email protected]) * Present address: Project Leader. Project “PROSpection et habitat des grands PElagiques de la ZEE de La Réunion” (PROSPER), CAP RUN, ARDA, Magasin n°10, Port Ouest, 97420, Le Port, La Réunion, France. ABSTRACT Draft identification guide for species of Mobulidae family, which is commonly observed as by-catch in tuna associated fishery in the region is presented. INTRODUCTION Species of Mobulidae family are a common bycatch occurs in the pelagic tuna fisheries of the Indian Ocean both in the industrial (purse seine and longline) and artisanal (gillnets) sector (Romanov 2002; White et al., 2006; Romanov et al., 2008). Apparently these species also subject of overexploitation: most of Indian Ocean species marked as vulnerable or near threatened at the global level, however local assessment are often not exist (Table). Status of the species of the family Mobulidae in the Indian Ocean (IUCN, 2007) IUCN Status1 Species Common name Global status WIO EIO Manta birostris (Walbaum 1792) Giant manta NT - VU Manta alfredi (Krefft, 1868) Alfred manta - - - Mobula eregoodootenkee Longhorned - - - (Bleeker, 1859) mobula Mobula japanica (Müller & Henle, Spinetail mobula NT - - 1841) Mobula kuhlii (Müller & Henle, Shortfin devil ray NE - - 1841) Mobula tarapacana (Philippi, Chilean devil ray DD - VU 1892) Mobula thurstoni (Lloyd, 1908) Smoothtail NT - - mobula Lack of the data on the distribution, fisheries and biology of mobulids is often originated from the problem with specific identification of these species in the field. -
A Fish Fauna from the Lowermost Bartonian of the Transylvanian Basin, Romania
Palaeontologia Electronica palaeo-electronica.org A fish fauna from the lowermost Bartonian of the Transylvanian Basin, Romania Nicolae Trif, Vlad Codrea, and Viorel Arghiuș ABSTRACT A fish fauna newly discovered in the middle Eocene marine sediments cropping out near the village of Luna de Sus, Romania, completes the fossil record of the East- ern European region. Teeth belonging to 15 species of Chondrichthyes and two spe- cies of Actinopterygii are herein recorded from the lowermost Bartonian deposits. These Paleogene fish document a marine tropical environment of medium deep waters in the northwestern area of the Transylvanian Basin. The vertical distributions of extant equivalent taxa allow a sea depth estimation of 100 to 200 m. The warm climate is doc- umented by both the present faunal assemblage and previous palynological studies. It is important to note the presence of the scarcely known and poorly understood pycno- dont species Phacodus punctatus and of the oldest representative of Labridae from this Carpathian area. The diversity of the fauna was found to be average compared to some areas from Western Europe or North Africa, but it falls within the regional diver- sity range of the Eastern European localities. Nicolae Trif. Department of Geology, Faculty of Biology-Geology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084, Cluj-Napoca, Romania and Brukenthal National Museum, Natural History Museum, Sibiu, Romania, 1 Cetății St., Sibiu, 550160, Romania. [email protected] Vlad Codrea. Department of Geology, Faculty of Biology-Geology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084, Cluj-Napoca, Romania. [email protected] Viorel Arghiuș. Environmental Sciences Department, Faculty of Environmental Sciences and Engineering, Babeş-Bolyai University, 30 Fântânele St., 400294, Cluj-Napoca, Romania. -
Gymnuridae 575
click for previous page Rajiformes: Gymnuridae 575 GYMNURIDAE Butterfly rays by J.D. McEachran, TexasA&MUniversity, USA and M.R. de Carvalho, American Museum of Natural History, New York, USA iagnostic characters:Medium to large-sized stingrays (maximum disc width over 2 m).Body strongly de- Dpressed, with head, trunk, and broadly expanded pectoral fins forming rhomboid disc. Disc at least 1.5 times broad as long. Tail very slender and short (shorter than disc), distinctly demarcated from disc.Pec- toral fins continuous along sides of head, not forming subrostral lobes or cephalic fins.Eyes and spira- cles on top of head. Some species have spiracular tentacles. Snout obtuse and angular. Nasal curtains are broadly expanded and continuous across narrow isthmus in front of mouth and are smooth-edged (with rare exceptions). Mouth is slightly arched and lacks papillae on floor. Jaws bear many small teeth in bands. Cau- dal fin always absent, dorsal fin absent in all Western Central Atlantic representatives. Pectoral fins extend distinctly posterior to origin of pelvic fins. Pelvic fins are moderately laterally expanded and not divided into anterior and posterior lobes. Some species have 1 or more long, serrated spines. Tail with longitudinal folds on upper and/or lower surfaces. Skin of upper side naked in most species, but with a variable num- ber of tubercles in large individuals of others. Colour: dorsal surface grey, light green, olive, purple, or dark brown, sometimes with a reddish cast, often marked with spots or lines; ventral surface white, sometimes with a bronze or rusty cast. disc at least 1.5 times broad as long smooth nasal curtain nostril tail slender and short mouth detail of mouth Habitat, biology, and fisheries: Butterfly rays are cosmopolitan in tropical and warm-temperate waters, usu- ally inhabiting sandy and muddy bottoms in shallow coastal waters, including estuaries and river mouths. -
Reassessment of Historical Sections from the Paleogene Marine Margin of the Congo Basin Reveals an Almost Complete Absence of Danian Deposits
Geoscience Frontiers 10 (2019) 1039e1063 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research Paper Reassessment of historical sections from the Paleogene marine margin of the Congo Basin reveals an almost complete absence of Danian deposits Floréal Solé a,*, Corentin Noiret b, Delphine Desmares c, Sylvain Adnet d, Louis Taverne a, Thierry De Putter e, Florias Mees e, Johan Yans b, Thomas Steeman f, Stephen Louwye f, Annelise Folie g, Nancy J. Stevens h, Gregg F. Gunnell i,1, Daniel Baudet e, Nicole Kitambala Yaya j, Thierry Smith a a Royal Belgian Institute of Natural Sciences (RBINS), Operational Directorate Earth and History of Life, Rue Vautier 29, 1000, Brussels, Belgium b University of Namur (UNamur), Department of Geology, Rue de Bruxelles 61, 5000, Namur, Belgium c Sorbonne Université, UPMC Paris 06, UMR 7207 (CR2P), MNHN-UPMC e CNRS, 75005, Paris, France d UMR 5554 e Institut des Sciences de l’Evolution, Université Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France e Royal Museum for Central Africa (RMCA), Geodynamics and Mineral Resources, Leuvensesteenweg 13, 3080, Tervuren, Belgium f Ghent University (UGent), Department of Geology, Krijgslaan 281/S8, 9000, Ghent, Belgium g Royal Belgian Institute of Natural Sciences (RBINS), Heritage Scientific Survey, Rue Vautier 29, 1000, Brussels, Belgium h Ohio University, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Irvine Hall 228, Athens, OH, USA i Duke University Lemur Center, Division of Fossil Primates (DFP), 1013 Broad Street, Durham, NC 27705, USA j Centre de Recherches Géologiques et Minières (CRGM), 44, av. -
An Introduction to the Classification of Elasmobranchs
An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved. -
Evolution of White and Megatooth Sharks, and Evidence for Early Predation on Seals, Sirenians, and Whales
Vol.5, No.11, 1203-1218 (2013) Natural Science http://dx.doi.org/10.4236/ns.2013.511148 Evolution of white and megatooth sharks, and evidence for early predation on seals, sirenians, and whales Cajus G. Diedrich Paleologic, Petra Bezruce 96, Zdice, Czech Republic; [email protected], www.paleologic.eu Received 6 April 2013; revised 6 May 2013; accepted 13 May 2013 Copyright © 2013 Cajus G. Diedrich. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT ments were generally first attributed to “white shark Carcharodon carcharias (Linné, 1758) ancestors”. Con- The early white shark Carcharodon Smith, 1838 troversy has subsequently arisen whether they should be with the fossil Carcharodon auriculatus (Blain- ascribed to the megatooth shark (“Carcharocles”—he- ville, 1818) and the extinct megatooth shark Oto- rein Otodus), or to the white shark (Carcharodon) line- dus Agassiz, 1843 with species Otodus sokolovi age [1]. This controversy is partly a result of non-sys- (Jaeckel, 1895) were both present in the Euro- tematic excavation of single serrated similar looking pean proto North Sea Basin about 47.8 - 41.3 m.y. teeth from many localities around the world, and from ago (Lutetian, early Middle Eocene), as well as in horizons of different ages. DNA studies have at least the Tethys realm around the Afican-Eurasian resolved the general position of the extant form of Car- shallow marine habitats. Both top predators deve- charodon carcharias, placing it between the Isurus and loped to be polyphyletic, with possible two dif- Lamna genera [2,3], without taking into account a revi- ferent lamnid shark ancestors within the Early sion and including of extinct fossil species such as Oto- Paleocene to Early Eocene timespan with Car- dus. -
Classification and Systematic Arrangement
Introduction 13 CLASSIFICATION AND SYSTEMATIC ARRANGEMENT Considering that the purpose of this document is to Class Chondrichthyes (cartilaginous fishes) provide a simple user-friendly guide for species identification, no reference will be found here to Subclass Holocephali (chimaeras) dichotomy keys for single species. It is important that the classification used in this guide be defined, Order Chimaeriformes (chimaera and silver sharks) as available literature is not always in agreement Subclass Elasmobranchii (sharks) with this presentation. The classification of this group is still under review as no consensus has Superorder Squalomorphi (squalomorph sharks) been found to reconcile different authors’ positions. Order Hexanchiformes (cow and frilled sharks) For more information and further specific details on the taxonomy and biology of cartilaginous fish Order Squaliformes (dogfish sharks) species, refer to Tortonese, 1956; Hureau and Monod 1979; Whitehead et al., 1984; Fischer et al., Order Squatiniformes (angel sharks) 1987; Fredj and Maurin, 1987; Compagno, 1988, 2005; Nelson, 1994; Shirai, 1996; Mould, 1998. The Order Pristiophoriformes (sawsharks) * consultation of FishBase http://www.fishbase.org Order Rajiformes (batoids) (Froese and Pauly, 2000) proved very useful. The most fundamental references are Compagno’s Superorder Galeomorphi (galeomorph sharks) catalogues issued in 1984 and his recent revision partially issued in 2001. Order Heterodontiformes (bullhead sharks) * This guide follows the systematic organization Order -
Occurrence of Devil Rays (Myliobatiformes: Mobulidae)
Scientific Note Record of a pregnant Mobula thurstoni and occurrence of Manta birostris (Myliobatiformes: Mobulidae) in the vicinity of Saint Peter and Saint Paul Archipelago (Equatorial Atlantic) 1, 2* 1 1 SIBELE A. MENDONÇA , BRUNO C. L. MACENA , EMMANUELLY CREIO , DANIELLE 1, 2 1 1 L. VIANA , DANIEL F. VIANA & FABIO. H. V. HAZIN 1Universidade Federal Rural de Pernambuco, UFRPE Laboratório de Oceanografia Pesqueira, LOP/Departamento de Pesca e Aqüicultura, DEPAq/. Av. Dom Manoel de Medeiros, s/n, campus universitário, Dois Irmãos. CEP- 52171-900 Recife, PE, Brasil. 2 Universidade Federal de Pernambuco, UFPE, Cidade Universitária, Departamento de Oceanografia, Recife, PE, Brasil. *E-mail: [email protected] Abstract. In this study, the occurrence of a pregnant Mobula thurstoni and six specimens of Manta birostris from the Archipelago of St. Peter and St. Paul were recorded for the first time. The description of morphology and morphometrics of the embryo of M. thurstoni was also reported. Keywords: oceanic island, chondrichthyes, elasmobranchii, devil rays, pelagic animal Resumo. Registro de Mobula thurstoni prenhe e ocorrência de Manta birostris (Myliobatiformes: Mobulidae) no entorno do Arquipélago de São Pedro e São Paulo (Atlântico Equatorial). No presente trabalho, as ocorrências de uma Mobula thurstoni prenhe e de seis espécimes de Manta birostris no Arquipélago de São Pedro e São Paulo foram registradas pela primeira vez. A descrição morfológica e os dados morfométricos do embrião de M. thurstoni foram igualmente reportados. Palavras chave: ilha oceânica, chondrichthyes, elasmobranchii, raias manta, animais pelágicos The Mobulidae family is composed of 11 latter, four species were recorded in the vicinity of species and two genera: Manta and Mobula and is the Saint Peter and Saint Paul Archipelago (SPSPA; found typically in waters rich in secondary 00°55’N, 29°21’W); M. -
Stingray Bay: Media Kit
STINGRAY BAY: MEDIA KIT Stingray Bay has been the talk of the town! What is it? Columbus Zoo and Aquarium guests and members will now have the opportunity to see stingrays up close and to touch these majestic creatures! The Stingray Bay experience will encourage visitors to interact with the Zoo’s brand new school of stingrays by watching these beautiful animals “fly” through the water and dipping their hands in the water to come in contact with them. Where is located? Located in Jungle Jack’s Landing near Zoombezi Bay, Stingray Bay will feature an 18,000-gallon saltwater pool for stingrays to call home. Staff and volunteers will monitor the pool, inform guests about the best ways to touch the animals and answer questions when the exhibit opens daily at 10 a.m. What types of stingrays call Stingray Bay home? Dozens of cownose and southern stingrays will glide though the waters of Stingray Bay. Educational interpreters will explain the role of these stingrays in the environment. Stingrays are typically bottom feeders with molar-like teeth used to crush the shells of their prey such as crustaceans, mollusks, and other invertebrates. I’m excited to touch the stingrays, but is it safe? Absolutely! The rays barbs have been carefully trimmed off their whip-like tails. The painless procedure is similar to cutting human fingernails. Safe for all ages, the landscaped pool features a waterfall and a wide ledge for toddlers to lean against when touching the rays. This sounds cool! How much does it cost? Admission to Stingray Bay is free for Columbus Zoo and Aquarium Gold Members and discounted for Members. -
Bayesian Estimation of the Age and Growth of the Golden Cownose Ray
10 National Marine Fisheries Service Fishery Bulletin First U.S. Commissioner established in 1881 of Fisheries and founder NOAA of Fishery Bulletin Abstract—The aim of this study was to Bayesian estimation of the age and growth of the use a Bayesian approach to estimate age and growth parameters for the golden golden cownose ray (Rhinoptera steindachneri) cownose ray (Rhinoptera steindachneri) in the southern Gulf of California in in the southern Gulf of California in Mexico Mexico. Age estimates were obtained through analysis of vertebrae of 249 Luis D. Carrillo-Colín1 individuals. The von Bertalanffy growth J. Fernando Márquez-Farías (contact author)2 function (VBGF) and Gompertz growth 3 model (GM) were fit to length-at- age Raúl E. Lara-Mendoza 4 data by using a Markov chain Monte Oscar G. Zamora-García Carlo algorithm for parameter estima- tion. Prior distributions of parameters Email address for contact author: [email protected] were included for an informative prior for disc width at birth (DW0) and unin- 1 Posgrado en Ciencias del Mar y Limnología 3 Dirección General Adjunta de Investigación formative priors for the theoretical Universidad Nacional Autónoma Pesquera en el Atlántico maximum disc width (DW∞) and growth de Mexico Instituto Nacional de Pesca y Acuacultura coefficients (k and g, for the VBGF and Avenida Ciudad Universitaria 3000 Secretaría de Agricultura y Desarrollo Rural GM, respectively). Our results indicate 04510 Coyoacán, Mexico City, Avenida Mexico 190 that the golden cownose ray lives up to Mexico Colonia del Carmen 13 years. The GM for combined sexes 04100 Coyoacán, Mexico City, Mexico was selected as the best model by using 2 Facultad de Ciencias del Mar the Watanabe–Akaike information cri- Universidad Autónoma de Sinaloa 4 Servicios Integrales de Recursos Biológicos, terion for model selection suitable for Paseo Claussen s/n Acuáticos y Ambientales Bayesian estimation. -
First Description of a Tooth of the Extinct Giant Shark Carcharocles
First description of a tooth of the extinct giant shark Carcharocles megalodon (Agassiz, 1835) found in the province of Seville (SW Iberian Peninsula) (Otodontidae) Primera descripción de un diente del extinto tiburón gigante Carcharocles megalodon (Agassiz, 1835) encontrado en la provincia de Sevilla (SO de la Península Ibérica) (Otodontidae) José Luis Medina-Gavilán 1, Antonio Toscano 2, Fernando Muñiz 3, Francisco Javier Delgado 4 1. Sociedad de Estudios Ambientales (SOCEAMB) − Perú 4, 41100 Coria del Río, Sevilla (Spain) − [email protected] 2. Departamento de Geodinámica y Paleontología, Facultad de Ciencias Experimentales, Universidad de Huelva − Campus El Carmen, 21071 Huelva (Spain) − [email protected] 3. Departamento de Geodinámica y Paleontología, Facultad de Ciencias Experimentales, Universidad de Huelva − Campus El Carmen, 21071 Huelva (Spain) − [email protected] 4. Usuario de BiodiversidadVirtual.org − Álvarez Quintero 13, 41220 Burguillos, Sevilla (Spain) − [email protected] ABSTRACT: Fossil remains of the extinct giant shark Carcharocles megalodon (Agassiz, 1835) are rare in interior Andalusia (Southern Spain). For the first time, a fossil tooth belonging to this paleospecies is described from material found in the province of Seville (Burguillos). KEY WORDS: Carcharocles megalodon (Agassiz, 1835), megalodon, Otodontidae, fossil, paleontology, Burguillos, Seville, Tortonian. RESUMEN: Los restos del extinto tiburón gigante Carcharocles megalodon (Agassiz, 1835) son raros en el interior de Andalucía (sur de España). Por primera vez, se describe un diente fósil de esta paleoespecie a partir de material hallado en Sevilla (Burguillos). PALABRAS CLAVE: Carcharocles megalodon (Agassiz, 1835), megalodón, Otodontidae, fósil, paleontología, Burguillos, Sevilla, Tortoniense. Introduction Carcharocles megalodon (Agassiz, 1835), the megalodon, is widely recognised as the largest shark that ever lived.