Genome-Wide Association Study Meta-Analysis of European

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide Association Study Meta-Analysis of European Molecular Psychiatry (2013) 18, 195–205 & 2013 Macmillan Publishers Limited All rights reserved 1359-4184/13 www.nature.com/mp ORIGINAL ARTICLE Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder DT Chen1, X Jiang1, N Akula1, YY Shugart1, JR Wendland1, CJM Steele1, L Kassem1, J-H Park2, N Chatterjee2, S Jamain3, A Cheng4, M Leboyer3, P Muglia5, TG Schulze1,6, S Cichon7,MMNo¨then7, M Rietschel8, BiGS9 and FJ McMahon1 1Human Genetics Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, US Department of Health and Human Services, Bethesda, MA, USA; 2Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Rockville, MA, USA; 3Inserm U955, Department of Psychiatry, Groupe Hospitalier Henri Mondor-Albert Chenevier, AP-HP, Universite´ Paris Est, Fondation FondaMental, Cre´teil, France; 4Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; 5Department of Psychiatry, University of Toronto, Toronto, ON, Canada; 6Section on Psychiatric Genetics, Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-Universita¨t, Go¨ttingen, Germany; 7Institute of Neuroscience and Medicine, Juelich, Germany and Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany and 8Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Mannheim, Mannheim, Germany Meta-analyses of bipolar disorder (BD) genome-wide association studies (GWAS) have identified several genome-wide significant signals in European-ancestry samples, but so far account for little of the inherited risk. We performed a meta-analysis of B750 000 high-quality genetic markers on a combined sample of B14 000 subjects of European and Asian-ancestry (phase I). The most significant findings were further tested in an extended sample of B17 700 cases and controls (phase II). The results suggest novel association findings near the genes TRANK1 (LBA1), LMAN2L and PTGFR. In phase I, the most significant single nucleotide polymorphism (SNP), rs9834970 near TRANK1, was significant at the P = 2.4 Â 10À11 level, with no heterogeneity. Supportive evidence for prior association findings near ANK3 and a locus on chromosome 3p21.1 was also observed. The phase II results were similar, although the heterogeneity test became significant for several SNPs. On the basis of these results and other established risk loci, we used the method developed by Park et al. to estimate the number, and the effect size distribution, of BD risk loci that could still be found by GWAS methods. We estimate that > 63 000 case–control samples would be needed to identify the B105 BD risk loci discoverable by GWAS, and that these will together explain < 6% of the inherited risk. These results support previous GWAS findings and identify three new candidate genes for BD. Further studies are needed to replicate these findings and may potentially lead to identification of functional variants. Sample size will remain a limiting factor in the discovery of common alleles associated with BD. Molecular Psychiatry (2013) 18, 195–205; doi:10.1038/mp.2011.157; published online 20 December 2011 Keywords: ANK3; bipolar disorder; LBA1; meta-analysis; TRANK1; 3p21 Introduction heritability estimated by previous twin studies.1–11 With a lifetime prevalence worldwide between 0.5 The genetic basis of bipolar disorder (BD) is still and 1.5%, BD is characterized clinically by often largely unknown despite robust evidence of high disabling fluctuations of mood and behavior, com- monly developing in late adolescence to early adult- hood. Although the pathogenesis of BD remains Correspondence: Dr DT Chen, Human Genetics Branch, National Institute of Mental Health, Intramural Research Program, National unclear, genome-wide association studies (GWAS) Institutes of Health, US Department of Health and Human have so far identified and replicated a few risk loci Services, 35 Convent Drive, Room 1A-208, Bethesda, MD 20892, (near the genes DGKH, ANK3 and CACNA1C),12–16 USA. along with a locus on chromosome 3p21.1 that harbors E-mail: [email protected] 17 9 anumberofgenes. Together, these loci account for The Bipolar Genome Study (BiGS) authorship list is shown in the little of the BD heritability, suggesting that additional Appendix. Received 31 May 2011; revised 7 October 2011; accepted 17 risk loci remain undiscovered. The total BD GWAS October 2011; published online 20 December 2011 sample size studied, so far, remains low compared Three novel loci associated with bipolar disorder DT Chen et al 196 with many other common traits studied, such as type 2 flagged as having different alleles than in HapMap diabetes, height, serum lipids, colorectal cancer and CEU or as monomorphic were reviewed, after which rheumatoid arthritis.18–23 Some of the missing herit- they were recoded for the reverse-strand (flipped) or ability may be explained by additional risk loci that dropped. SNPs flagged for allele frequencies markedly can only be identified in larger sample sizes.24 different from HapMap CEU were also reviewed. Psychiatric disorders such as BD pose statistical Palindromic SNPs whose allele frequencies were challenges when it comes to very large sample sizes. consistent with reversed coding were flipped. SNPs Phenotyping by direct diagnostic evaluation is expen- with unexpected allele frequencies were dropped. sive. Reliance on physician or hospital-assigned PLINK (version1.4) was used to flip and drop SNPs.34 diagnoses can save money, but introduces potential After all allele-coding, monomorphism and palin- biases, like changing diagnostic-criteria, which can drome issues were resolved, imputation was run be difficult to correct.25 Increasing sample size by again. SNPs in the result files were dropped if the combining data across studies, can be fruitful. Meta- minor allele frequency (MAF) in cases or controls was analysis is an efficient and largely unbiased way < 0.05, or if the error rate (in the .erate output file) was to increase effective sample size by systematically > 0.01. The imputed data were then formatted into combining association signals across studies. As most PLINK binaries for analysis. Supplementary Table 1 common genetic variation is ancient and widespread, provides detailed description regarding genotyping some risk alleles may be shared across continental and imputation for the Taiwan, Wellcome Trust Case– populations. It is possible to use meta-analysis to Control Consortium, STEP-BD,35 FondaMental Bipolar combine study samples of differing ancestry, as long and GlaxoSmithKline (GSK) samples. as appropriate ancestry-matched controls are used within each study.26–28 Meta-analysis In this study, we have sought to identify novel risk PLINK output (assoc) files were modified with alleles for BD by meta-analysis of world-wide BD columns for direction-of-association, sample size GWAS, comprising case–control samples of both and strand. For most samples, sample size equaled European and Asian ancestry. The combined sample the sum of cases and controls included in the final size of 17 656 is the largest so far in BD, to our analysis, after the quality-control steps were com- knowledge. The results suggest significant novel plete. For STEP-BD, sample size was set to equal the association signals near the genes TRANK1 (LBA1), number of cases plus controls that did not overlap LMAN2L and PTGFR, and provide supportive evi- with those in the NIMH-GAIN or TGEN. This was dence for the previously reported association signals done to avoid over-weighting the results from the near ANK3 and within the 3p21.1 locus. Largely con- NIMH-control sample, overlapping portions of sistent signals were observed in both the European which were included in both the NIMH-GAIN, TGEN ancestry and Asian-ancestry samples. Based on these and STEP-BD. Modified files were loaded into findings and discoveries to date, we also present a METAL (November 2010 version), then processed GWAS discovery trajectory for BD. using the GENOMICCONTROL option, which applies a genomic control36 correction in samples where the genomic inflation factor is > 1.0. METAL weights Materials and methods each sample based on the square root of the sample Study samples size. Care was taken to avoid mis-assigning alleles The samples used in the meta-analysis have been when combining results from different samples and described previously, and details are provided in platforms.37 Using the ‘STRANDLABEL’ and ‘USES- Table 1 and Supplementary Table 1.12,15,17,29–32 For TRAND ON’ commands in METAL, these SNPs were phase I, we obtained five European and one Asian- recoded to ensure consistent allele coding across the ancestry sample, totaling B14 000 cases and controls. samples analyzed. Because the German sample was The most significant hits (P <4Â 10À3) were tested in genotyped on the Illumina platform (San Diego, CA, an extended sample that included phase I plus two USA) that contains no palindromic SNPs, we used independent European ancestry samples (B3800 that sample as the gold standard for our study. cases/controls). We refer to this as the phase II sample. Results were combined under a fixed-effects model, using METAL. For initial discovery purposes, the Imputation fixed-effects model is more powerful than the tradi- Genotype data from the NIMH-GAIN, German and tional random-effects model, and Pereira et al.24 TGEN samples were used to impute data on 2.1 suggest the fixed-effects model is preferable, espe- million HapMap phase2 single-nucleotide polymorph- cially when the cumulative sample size is in the range ism (SNPs), by use of the program Markov Chain of 2000–20 000. Haplotyping (MACH version1.0; http://www.sph. After selected results were confirmed, heterogene- umich.edu/csg/abecasis/MACH/download/).33 MACH ity statistics were calculated, using Comprehensive uses Markov chain haplotyping to resolve haplotypes, Meta-analysis version 2.0. When heterogeneity tests and thereby missing genotypes, from observed geno- are significant, assumptions of the fixed-effects model types in unrelated individuals.
Recommended publications
  • Genetic Fine Mapping and Genomic Annotation Defines Causal
    Journal of Cancer 2020, Vol. 11 6841 Ivyspring International Publisher Journal of Cancer 2020; 11(23): 6841-6849. doi: 10.7150/jca.47189 Research Paper Genetic Fine Mapping and Genomic Annotation Defines Causal Mechanisms at A Novel Colorectal Cancer Susceptibility Locus in Han Chinese Kewei Jiang3*, Fengying Du1*, Liang lv4, Hongqing Zhuo1,2, Tao Xu1,2, Lipan Peng1,2, Yuezhi Chen1,2, Leping Li1,2, Jizhun Zhang1,2 1. Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. 2. Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China. 3. Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing, China. 4. Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China. *Equal co-first authorship. Corresponding author: Jizhun Zhang, Permanent address: Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, jingwuweiqi street, 324, Jinan, Shandong 250021, China. Phone: 86-0531-68777117; Fax: 86-0531-68777198; E-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2020.04.19; Accepted: 2020.09.14; Published: 2020.09.30 Abstract Genome-wide association studies of colorectal cancer (CRC) have identified two risk SNPs. The characterization of these risk regions in diverse racial groups with different linkage disequilibrium structure would aid in localizing the causal variants. Herein, fine mapping of the established CRC loci was carried out in 1,508 cases and 1,482 controls obtained from the Han Chinese population.
    [Show full text]
  • Chicken Linkage Disequilibrium Is Much More Complex Over Much Longer Distance Than Previously Appreciated
    Look Over the Horizon - Chicken Linkage Disequilibrium is Much More Complex Over Much Longer Distance than Previously Appreciated Ehud Lipkin ( [email protected] ) Hebrew University of Jerusalem Janet E. Fulton Hy-Line (United States) Jacqueline Smith University of Edinburgh David W. Burt University of Edinburgh Morris Soller Hebrew University of Jerusalem Research Article Keywords: Chicken, long-range linkage disequilibrium, QTL, F6, LD blocks Posted Date: June 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-598396/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background Appreciable Linkage Disequilibrium (LD) is commonly found between pairs of loci close to one another, decreasing rapidly with distance between the loci. This provides the basis studies to map Quantitative Trait Loci Regions (QTLRs), where it is custom to assume that the closest sites to a signicant markers are the prime candidate to be the causative mutation. Nevertheless, Long-Range LD (LRLD) can also be found among well-separated sites. LD blocks are runs of genomic sites all having appreciable LD with one another. High LD and LRLD are often separated by genomic sites with which they have practically no LD. Thus, not only can LD be found among distant loci, but also its pattern may be complex, comprised of fragmented blocks. Here, chicken LRLD and LD blocks, and their relationship with previously described Marek’s Disease (MD) QTLRs, were studied in an F6 population from a full-sib advanced intercross line, and in eight commercial pure layer lines.
    [Show full text]
  • Convergent Functional Genomics of Schizophrenia: from Comprehensive Understanding to Genetic Risk Prediction
    Molecular Psychiatry (2012) 17, 887 -- 905 & 2012 Macmillan Publishers Limited All rights reserved 1359-4184/12 www.nature.com/mp IMMEDIATE COMMUNICATION Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction M Ayalew1,2,9, H Le-Niculescu1,9, DF Levey1, N Jain1, B Changala1, SD Patel1, E Winiger1, A Breier1, A Shekhar1, R Amdur3, D Koller4, JI Nurnberger1, A Corvin5, M Geyer6, MT Tsuang6, D Salomon7, NJ Schork7, AH Fanous3, MC O’Donovan8 and AB Niculescu1,2 We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-- coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • The Transition from Primary Colorectal Cancer to Isolated Peritoneal Malignancy
    medRxiv preprint doi: https://doi.org/10.1101/2020.02.24.20027318; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . The transition from primary colorectal cancer to isolated peritoneal malignancy is associated with a hypermutant, hypermethylated state Sally Hallam1, Joanne Stockton1, Claire Bryer1, Celina Whalley1, Valerie Pestinger1, Haney Youssef1, Andrew D Beggs1 1 = Surgical Research Laboratory, Institute of Cancer & Genomic Science, University of Birmingham, B15 2TT. Correspondence to: Andrew Beggs, [email protected] KEYWORDS: Colorectal cancer, peritoneal metastasis ABBREVIATIONS: Colorectal cancer (CRC), Colorectal peritoneal metastasis (CPM), Cytoreductive surgery and heated intraperitoneal chemotherapy (CRS & HIPEC), Disease free survival (DFS), Differentially methylated regions (DMR), Overall survival (OS), TableFormalin fixed paraffin embedded (FFPE), Hepatocellular carcinoma (HCC) ARTICLE CATEGORY: Research article NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.02.24.20027318; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . NOVELTY AND IMPACT: Colorectal peritoneal metastasis (CPM) are associated with limited and variable survival despite patient selection using known prognostic factors and optimal currently available treatments.
    [Show full text]
  • Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from in Vitro Model Systems
    International Journal of Molecular Sciences Review Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from In Vitro Model Systems Ritu Nayak, Idan Rosh, Irina Kustanovich and Shani Stern * Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel; [email protected] (R.N.); [email protected] (I.R.); [email protected] (I.K.) * Correspondence: [email protected] Abstract: Bipolar disorder (BD) and schizophrenia are psychiatric disorders that manifest unusual mental, behavioral, and emotional patterns leading to suffering and disability. These disorders span heterogeneous conditions with variable heredity and elusive pathophysiology. Mood stabilizers such as lithium and valproic acid (VPA) have been shown to be effective in BD and, to some extent in schizophrenia. This review highlights the efficacy of lithium and VPA treatment in several randomized, controlled human trials conducted in patients suffering from BD and schizophrenia. Furthermore, we also address the importance of using induced pluripotent stem cells (iPSCs) as a disease model for mirroring the disease’s phenotypes. In BD, iPSC-derived neurons enabled finding an endophenotype of hyperexcitability with increased hyperpolarizations. Some of the disease phenotypes were significantly alleviated by lithium treatment. VPA studies have also reported rescuing the Wnt/β-catenin pathway and reducing activity. Another significant contribution of iPSC models can be attributed to studying the molecular etiologies of schizophrenia such as abnormal differentiation of patient-derived neural stem cells, decreased neuronal connectivity and neurite Citation: Nayak, R.; Rosh, I.; number, impaired synaptic function, and altered gene expression patterns. Overall, despite significant Kustanovich, I.; Stern, S. Mood advances using these novel models, much more work remains to fully understand the mechanisms Stabilizers in Psychiatric Disorders by which these disorders affect the patients’ brains.
    [Show full text]
  • Signature Redacted Thesis Supervisor Certified By
    Single-Cell Transcriptomics of the Mouse Thalamic Reticular Nucleus by Taibo Li S.B., Massachusetts Institute of Technology (2015) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2017 @ Massachusetts Institute of Technology 2017. All rights reserved. A uthor ... ..................... Department of Electrical Engineering and Computer Science May 25, 2017 Certified by. 3ignature redacted Guoping Feng Poitras Professor of Neuroscience, MIT Signature redacted Thesis Supervisor Certified by... Kasper Lage Assistant Professor, Harvard Medical School Thesis Supervisor Accepted by . Signature redacted Christopher Terman Chairman, Masters of Engineering Thesis Committee MASSACHUSETTS INSTITUTE 0) OF TECHNOLOGY w AUG 14 2017 LIBRARIES 2 Single-Cell Transcriptomics of the Mouse Thalamic Reticular Nucleus by Taibo Li Submitted to the Department of Electrical Engineering and Computer Science on May 25, 2017, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract The thalamic reticular nucleus (TRN) is strategically located at the interface between the cortex and the thalamus, and plays a key role in regulating thalamo-cortical in- teractions. Current understanding of TRN neurobiology has been limited due to the lack of a comprehensive survey of TRN heterogeneity. In this thesis, I developed an integrative computational framework to analyze the single-nucleus RNA sequencing data of mouse TRN in a data-driven manner. By combining transcriptomic, genetic, and functional proteomic data, I discovered novel insights into the molecular mecha- nisms through which TRN regulates sensory gating, and suggested targeted follow-up experiments to validate these findings.
    [Show full text]
  • RNA-Seq Transcriptome Reveals Different Molecular Responses
    Zhao et al. BMC Genomics (2020) 21:475 https://doi.org/10.1186/s12864-020-06885-4 RESEARCH ARTICLE Open Access RNA-Seq transcriptome reveals different molecular responses during human and mouse oocyte maturation and fertilization Zheng-Hui Zhao1,2, Tie-Gang Meng1,3, Ang Li1, Heide Schatten4, Zhen-Bo Wang1,2* and Qing-Yuan Sun1,3* Abstract Background: Female infertility is a worldwide concern and the etiology of infertility has not been thoroughly demonstrated. Although the mouse is a good model system to perform functional studies, the differences between mouse and human also need to be considered. The objective of this study is to elucidate the different molecular mechanisms underlying oocyte maturation and fertilization between human and mouse. Results: A comparative transcriptome analysis was performed to identify the differentially expressed genes and associated biological processes between human and mouse oocytes. In total, 8513 common genes, as well as 15, 165 and 6126 uniquely expressed genes were detected in human and mouse MII oocytes, respectively. Additionally, the ratios of non-homologous genes in human and mouse MII oocytes were 37 and 8%, respectively. Functional categorization analysis of the human MII non-homologous genes revealed that cAMP-mediated signaling, sister chromatid cohesin, and cell recognition were the major enriched biological processes. Interestingly, we couldn’t detect any GO categories in mouse non-homologous genes. Conclusions: This study demonstrates that human and mouse oocytes exhibit significant differences in gene expression profiles during oocyte maturation, which probably deciphers the differential molecular responses to oocyte maturation and fertilization. The significant differences between human and mouse oocytes limit the generalizations from mouse to human oocyte maturation.
    [Show full text]
  • SPRED2 (NM 181784) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC212199L3 SPRED2 (NM_181784) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: SPRED2 (NM_181784) Human Tagged ORF Clone Tag: Myc-DDK Symbol: SPRED2 Synonyms: Spred-2 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC212199). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_181784 ORF Size: 1254 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 SPRED2 (NM_181784) Human Tagged ORF Clone – RC212199L3 OTI Disclaimer: Due to the inherent nature of this plasmid, standard methods to replicate additional amounts of DNA in E. coli are highly likely to result in mutations and/or rearrangements. Therefore, OriGene does not guarantee the capability to replicate this plasmid DNA. Additional amounts of DNA can be purchased from OriGene with batch-specific, full-sequence verification at a reduced cost. Please contact our customer care team at [email protected] or by calling 301.340.3188 option 3 for pricing and delivery. The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g.
    [Show full text]
  • Towards Personalized Medicine in Psychiatry: Focus on Suicide
    TOWARDS PERSONALIZED MEDICINE IN PSYCHIATRY: FOCUS ON SUICIDE Daniel F. Levey Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Program of Medical Neuroscience, Indiana University April 2017 ii Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Andrew J. Saykin, Psy. D. - Chair ___________________________ Alan F. Breier, M.D. Doctoral Committee Gerry S. Oxford, Ph.D. December 13, 2016 Anantha Shekhar, M.D., Ph.D. Alexander B. Niculescu III, M.D., Ph.D. iii Dedication This work is dedicated to all those who suffer, whether their pain is physical or psychological. iv Acknowledgements The work I have done over the last several years would not have been possible without the contributions of many people. I first need to thank my terrific mentor and PI, Dr. Alexander Niculescu. He has continuously given me advice and opportunities over the years even as he has suffered through my many mistakes, and I greatly appreciate his patience. The incredible passion he brings to his work every single day has been inspirational. It has been an at times painful but often exhilarating 5 years. I need to thank Helen Le-Niculescu for being a wonderful colleague and mentor. I learned a lot about organization and presentation working alongside her, and her tireless work ethic was an excellent example for a new graduate student. I had the pleasure of working with a number of great people over the years. Mikias Ayalew showed me the ropes of the lab and began my understanding of the power of algorithms.
    [Show full text]
  • Meta-Analysis of Gene Expression in Individuals with Autism Spectrum Disorders
    Meta-analysis of Gene Expression in Individuals with Autism Spectrum Disorders by Carolyn Lin Wei Ch’ng BSc., University of Michigan Ann Arbor, 2011 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Bioinformatics) The University of British Columbia (Vancouver) August 2013 c Carolyn Lin Wei Ch’ng, 2013 Abstract Autism spectrum disorders (ASD) are clinically heterogeneous and biologically complex. State of the art genetics research has unveiled a large number of variants linked to ASD. But in general it remains unclear, what biological factors lead to changes in the brains of autistic individuals. We build on the premise that these heterogeneous genetic or genomic aberra- tions will converge towards a common impact downstream, which might be reflected in the transcriptomes of individuals with ASD. Similarly, a considerable number of transcriptome analyses have been performed in attempts to address this question, but their findings lack a clear consensus. As a result, each of these individual studies has not led to any significant advance in understanding the autistic phenotype as a whole. The goal of this research is to comprehensively re-evaluate these expression profiling studies by conducting a systematic meta-analysis. Here, we report a meta-analysis of over 1000 microarrays across twelve independent studies on expression changes in ASD compared to unaffected individuals, in blood and brain. We identified a number of genes that are consistently differentially expressed across studies of the brain, suggestive of effects on mitochondrial function. In blood, consistent changes were more difficult to identify, despite individual studies tending to exhibit larger effects than the brain studies.
    [Show full text]
  • Genetic and Functional Investigation of Inherited Neuropathies
    GENETIC AND FUNCTIONAL INVESTIGATION OF INHERITED NEUROPATHIES Ellen Cottenie MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology Supervisors: Professor Mary M. Reilly, Professor Henry Houlden and Professor Mike Hanna Thesis submitted for the degree of Doctor of Philosophy University College London 2015 1 Declaration I, Ellen Cottenie, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract With the discovery of next generation sequencing techniques the landscape of pathogenic gene discovery has shifted drastically over the last ten years. For the purpose of this thesis, focus was applied on finding genetic causes of inherited neuropathies, mainly Charcot-Marie-Tooth disease, by using both old and new genetic techniques and the accompanying functional investigations to prove the pathogenicity of these variants. Mutations in ATPase 6, the first mitochondrially encoded gene responsible for an isolated neuropathy, were found in five families with CMT2 by a traditional Sanger sequencing approach. The same approach was used to expand the phenotype associated with FIG4 mutations, known as CMT4J. Compound heterozygous mutations were found in a patient with a proximal and asymmetric weakness and rapid deterioration of strength in a single limb, mimicking CIDP. Several appropriate cohorts were screened for mutations in candidate genes with the traditional Sanger sequencing approach; however, no new pathogenic genes were found. In the case of the HINT1 gene, the originally stated frequency of 11% could not be replicated and a founder effect was suggested, underlying the importance of considering the ethnic background of a patient when screening for mutations in neuropathy-related genes.
    [Show full text]