Evidence for the Endophytic Colonization of Phaseolus Vulgaris (Common Bean) Roots by the Diazotroph Herbaspirillum Seropedicae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg -
The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities. -
A Case of Infective Endocarditis Due to Herbaspirillum Huttiense in a Pediatric Oncology Patient
Case Report A case of infective endocarditis due to Herbaspirillum Huttiense in a pediatric oncology patient Ahmet Alptuğ Güngör1, Tugba Bedir Demirdağ2, Bedia Dinç3, Emine Azak4, Arzu Yazal Erdem5, Burçin Kurtipek5, Aslinur Özkaya Parlakay2, Neriman Sarı5 1 Department of Pediatrics, Ankara City Hospital, Ankara, Turkey 2 Pediatric Infectious Diseases Department, Yildirim Beyazit University, Ankara City Hospital, Ankara, Turkey 3 Department of Medical Microbiology, Ankara City Hospital, Ankara, Turkey 4 Department of Pediatric Cardiology, Ankara City Hospital, Ankara, Turkey 5 Department of Pediatric Heamatology and Oncology, Ankara City Hospital, Ankara, Turkey Abstract Infective endocarditis (IE) is an infection of the endocardium and/or heart valves that involves thrombus formation (vegetation). This condition might damage the endocardial tissue and/or valves. An indwelling central venous catheter is a major risk factor for bacteremia at-risked pediatric populations such as premature infants; children with cancer and/or connective tissue disorders. Herbaspirillum huttiense is a Gram-negative opportunistic bacillus that may cause bacteremia and pneumonia rarely in this fragile population. Herein we report the very first case of bacteremia and IE in a pediatric oncology patient caused by H. huttiense. Key words: infective endocarditis; Herbaspirillum huttiense; pediatric; oncology. J Infect Dev Ctries 2020; 14(11):1349-1351. doi:10.3855/jidc.13001 (Received 09 May 2020 – Accepted 02 November 2020) Copyright © 2020 Güngör et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction there was no focus of fever; she didn’t have any oral Herbaspirillum huttiense is a Gram-negative mucositis or any inflammation sign on port catheter oxidase-positive non-fermenting bacillus commonly area. -
Herbaspirillum Seropedicae M.A
Brazilian Journal of Medical and Biological Research Online Provisional Version ISSN 0100-879X This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae M.A. Schmidt1, E.M. Souza1, V. Baura1, R. Wassem2, M.G. Yates1, F.O. Pedrosa1 and R.A. Monteiro1 1Departamento de Bioquímica e Biologia Molecular, 2Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brasil Abstract Herbaspirillum seropedicae is an endophytic diazotrophic bacterium, which associates with important agricultural plants. In the present study, we have investigated the attachment to and internal colonization of Phaseolus vulgaris roots by the H. seropedicae wild-type strain SMR1 and by a strain of H. seropedicae expressing a red fluorescent protein (DsRed) to track the bacterium in the plant tissues. Two-day-old P. vulgaris roots were incubated at 30°C for 15 min with 6 x 108 CFU/mL H. seropedicae SMR1 or RAM4. Three days after inoculation, 4 x 104 cells of endophytic H. seropedicae SMR1 were recovered per gram of fresh root, and 9 days after inoculation the number of endophytes increased to 4 x 106 CFU/g. The identity of the recovered bacteria was confirmed by amplification and sequencing of the 16SrRNA gene. Furthermore, confocal microscopy of P. vulgaris roots inoculated with H. seropedicae RAM4 showed that the bacterial cells were attached to the root surface 15 min after inoculation; fluorescent bacteria were visible in the internal tissues after 24 h and were found in the central cylinder after 72 h, showing that H. -
Cooperative Interaction of Janthinobacterium Sp. SLB01 and Flavobacterium Sp
International Journal of Molecular Sciences Article Cooperative Interaction of Janthinobacterium sp. SLB01 and Flavobacterium sp. SLB02 in the Diseased Sponge Lubomirskia baicalensis Ivan Petrushin 1,2,* , Sergei Belikov 1 and Lubov Chernogor 1 1 Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia; [email protected] (S.B.); [email protected] (L.C.) 2 Faculty of Business Communication and Informatics, Irkutsk State University, Irkutsk 664033, Russia * Correspondence: [email protected] Received: 31 August 2020; Accepted: 25 October 2020; Published: 30 October 2020 Abstract: Endemic freshwater sponges (demosponges, Lubomirskiidae) dominate in Lake Baikal, Central Siberia, Russia. These sponges are multicellular filter-feeding animals that represent a complex consortium of many species of eukaryotes and prokaryotes. In recent years, mass disease and death of Lubomirskia baicalensis has been a significant problem in Lake Baikal. The etiology and ecology of these events remain unknown. Bacteria from the families Flavobacteriaceae and Oxalobacteraceae dominate the microbiomes of diseased sponges. Both species are opportunistic pathogens common in freshwater ecosystems. The aim of our study was to analyze the genomes of strains Janthinobacterium sp. SLB01 and Flavobacterium sp. SLB02, isolated from diseased sponges to identify the reasons for their joint dominance. Janthinobacterium sp. SLB01 attacks other cells using a type VI secretion system and suppresses gram-positive bacteria with violacein, and regulates its own activity via quorum sensing. It produces floc and strong biofilm by exopolysaccharide biosynthesis and PEP-CTERM/XrtA protein expression. Flavobacterium sp. SLB02 utilizes the fragments of cell walls produced by polysaccharides. These two strains have a marked difference in carbohydrate acquisition. -
Altitudinal Patterns of Diversity and Functional Traits of Metabolically Active Microorganisms in Stream Biofilms
The ISME Journal (2015) 9, 2454–2464 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms Linda Wilhelm1, Katharina Besemer2, Lena Fragner3, Hannes Peter4, Wolfram Weckwerth3 and Tom J Battin1,5 1Department of Limnology and Oceanography, Faculty of Life Sciences, University of Vienna, Vienna, Austria; 2School of Engineering, University of Glasgow, Glasgow, UK; 3Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria; 4Lake and Glacier Ecology Research Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria and 5Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Resources structure ecological communities and potentially link biodiversity to energy flow. It is commonly believed that functional traits (generalists versus specialists) involved in the exploitation of resources depend on resource availability and environmental fluctuations. The longitudinal nature of stream ecosystems provides changing resources to stream biota with yet unknown effects on microbial functional traits and community structure. We investigated the impact of autochthonous (algal extract) and allochthonous (spruce extract) resources, as they change along alpine streams from above to below the treeline, on microbial diversity, -
Bacterial Endophyte Communities in Pinus Flexilis Are Structured by Host Age, Tissue Type, and Environmental Factors Dana L
Bacterial endophyte communities in Pinus flexilis are structured by host age, tissue type, and environmental factors Dana L. Carper1, Alyssa A. Carrell2,3,4, Lara M. Kueppers5,6, A. Carolin Frank2,5 1. Quantitative and Systems Biology Program, University of California Merced, Merced, USA 2. Life and Environmental Sciences, School of Natural Sciences, University of California Merced, Merced, USA 3. Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, USA 4. Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, USA 5. Sierra Nevada Research Institute, University of California Merced, Merced, USA 6. Energy and Resources Group, University of California, Berkeley, Berkeley, USA Abstract Background and aims: Forest tree microbiomes are important to forest dynamics, diversity, and ecosystem processes. Mature limber pines (Pinus flexilis) host a core microbiome of acetic acid bacteria in their foliage, but the bacterial endophyte community structure, variation, and assembly across tree ontogeny is unknown. The aims of this study were to test if the core microbiome observed in adult P. flexilis is established at the seedling stage, if seedlings host different endophyte communities in root and shoot tissues, and how environmental factors structure seedling endophyte communities. Methods: The 16S rRNA gene was sequenced to characterize the bacterial endophyte communities in roots and shoots of P. flexilis seedlings grown in plots at three elevations at Niwot Ridge, Colorado, subjected to experimental treatments (watering and heating). The data was compared to previously sequenced endophyte communities from adult tree foliage sampled in the same year and location. Results: Seedling shoots hosted a different core microbiome than adult tree foliage and were dominated by a few OTUs in the family Oxalobacteraceae, identical or closely related to strains with antifungal activity. -
Herbaspirillum Massiliense Sp. Nov
Standards in Genomic Sciences (2012) 7:200-209 DOI:10.4056/sigs.3086474 Non-contiguous finished genome sequence and description of Herbaspirillum massiliense sp. nov. Jean-Christophe Lagier1, Gregory Gimenez1, Catherine Robert1, Didier Raoult1 and Pierre- Edouard Fournier1* 1 Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix-Marseille Université *Corresponding author: Pierre-Edouard Fournier ([email protected]) Keywords: Herbaspirillum massiliense, genome Herbaspirillum massiliense strain JC206T sp. nov. is the type strain of H. massiliense sp. nov., a new species within the genus Herbaspirillum. This strain, whose genome is described here, was isolated from the fecal flora of a healthy Senegalese patient. H. massiliense is an aerobic rod. Here we describe the features of this organism, together with the complete genome se- quence and annotation. The 4,186,486 bp long genome (one chromosome but no plasmid) contains 3,847 protein-coding and 54 RNA genes, including 3 rRNA genes. Introduction Herbaspirillum massiliense strain JC206T (= CSUR seropedicae (Baldini et al. 1986) [5], and H. soli P159 = DSMZ 25712) is the type strain of H. (Carro et al. 2011) [8]. Members of the genus massiliense sp. nov. This bacterium was isolated Herbaspirillum have mainly been isolated from the from the stool of a healthy Senegalese patient. It is environment, in particular from soil, and from a Gram-negative, aerobic, flagellated, indole- plants for which they play the role of growth pro- negative bacillus. moters, but have also occasionally been isolated The current approach to classification of prokary- from humans, either as proven pathogens, causing otes, generally referred to as polyphasic taxono- bacteremia in leukemic patients [15,16], as poten- my, relies on a combination of phenotypic and tial pathogens in aortic aneurysms [17], or in res- genotypic characteristics [1]. -
Assessment of Native Cadmium-Resistant Bacteria in Cacao (Theobroma Cacao L.) - Cultivated Soils 2 3 Henry A
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455168; this version posted August 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Assessment of native cadmium-resistant bacteria in cacao (Theobroma cacao L.) - cultivated soils 2 3 Henry A. Cordoba-Novoa1 §, Jeimmy Cáceres-Zambrano2, §, Esperanza Torres-Rojas2* 4 5 1Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada. 2Faculty of 6 Agricultural Sciences, Universidad Nacional de Colombia, Bogotá D.C., Colombia. §These authors 7 contributed equally. 8 9 *Correspondence: 10 [email protected] 11 +57 3165000 ext. 19072 12 13 Abstract 14 Traces of cadmium (Cd) have been reported in some chocolate products due to soils with Cd and the high 15 ability of cacao plants to extract, transport, and accumulate it in their tissues. An agronomic strategy to 16 minimize the uptake of Cd by plants is the use of cadmium-resistant bacteria (Cd-RB). However, knowledge 17 about Cd-RB associated with cacao soils is scarce. This study was aimed to isolate and characterize Cd-RB 18 associated with cacao-cultivated soils in Colombia that may be used in the bioremediation of Cd-polluted 19 soils. Diversity of culturable Cd-RB, qualitative functional analysis related to nitrogen, phosphorous, carbon, 20 and Cd were performed. Thirty different Cd-RB morphotypes were isolated from soils with medium (NC, Y1, 21 Y2) and high (Y3) Cd concentrations using culture media with 6 mg Kg-1 Cd. -
Supplemental Tables for Plant-Derived Benzoxazinoids Act As Antibiotics and Shape Bacterial Communities
Supplemental Tables for Plant-derived benzoxazinoids act as antibiotics and shape bacterial communities Niklas Schandry, Katharina Jandrasits, Ruben Garrido-Oter, Claude Becker Contents Table S1. Syncom strains 2 Table S2. PERMANOVA 5 Table S3. ANOVA: observed taxa 6 Table S4. Observed diversity means and pairwise comparisons 7 Table S5. ANOVA: Shannon Diversity 9 Table S6. Shannon diversity means and pairwise comparisons 10 1 Table S1. Syncom strains Strain Genus Family Order Class Phylum Mixed Root70 Acidovorax Comamonadaceae Burkholderiales Betaproteobacteria Proteobacteria Root236 Aeromicrobium Nocardioidaceae Propionibacteriales Actinomycetia Actinobacteria Root100 Aminobacter Phyllobacteriaceae Rhizobiales Alphaproteobacteria Proteobacteria Root239 Bacillus Bacillaceae Bacillales Bacilli Firmicutes Root483D1 Bosea Bradyrhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria Root342 Caulobacter Caulobacteraceae Caulobacterales Alphaproteobacteria Proteobacteria Root137 Cellulomonas Cellulomonadaceae Actinomycetales Actinomycetia Actinobacteria Root1480D1 Duganella Oxalobacteraceae Burkholderiales Gammaproteobacteria Proteobacteria Root231 Ensifer Rhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria Root420 Flavobacterium Flavobacteriaceae Flavobacteriales Bacteroidia Bacteroidetes Root268 Hoeflea Phyllobacteriaceae Rhizobiales Alphaproteobacteria Proteobacteria Root209 Hydrogenophaga Comamonadaceae Burkholderiales Gammaproteobacteria Proteobacteria Root107 Kitasatospora Streptomycetaceae Streptomycetales Actinomycetia Actinobacteria -
Massilia Umbonata Sp. Nov., Able to Accumulate Poly-B-Hydroxybutyrate, Isolated from a Sewage Sludge Compost–Soil Microcosm
International Journal of Systematic and Evolutionary Microbiology (2014), 64, 131–137 DOI 10.1099/ijs.0.049874-0 Massilia umbonata sp. nov., able to accumulate poly-b-hydroxybutyrate, isolated from a sewage sludge compost–soil microcosm Marina Rodrı´guez-Dı´az,1,23 Federico Cerrone,33 Mar Sa´nchez-Peinado,3 Lucı´a SantaCruz-Calvo,3 Clementina Pozo1,3 and Jesu´s Gonza´lez Lo´pez1,3 Correspondence 1Department of Microbiology, University of Granada, Granada, Spain Clementina Pozo 2Max-Planck-Institut fu¨r Marine Mikrobiologie, Celsiusstrasse 1, 28359 Bremen, Germany [email protected] 3Water Research Institute, University of Granada, Granada, Spain A bacterial strain, designated strain LP01T, was isolated from a laboratory-scale microcosm packed with a mixture of soil and sewage sludge compost designed to study the evolution of microbial biodiversity over time. The bacterial strain was selected for its potential ability to store polyhydroxyalkanoates (PHAs) as intracellular granules. The cells were aerobic, Gram-stain- negative, non-endospore-forming motile rods. Phylogenetically, the strain was classified within the genus Massilia, as its 16S rRNA gene sequence had similarity of 99.2 % with respect to those of Massilia albidiflava DSM 17472T and M. lutea DSM 17473T. DNA–DNA hybridization showed low relatedness of strain LP01T to the type strains of other, phylogenetically related species of the genus Massilia. It contained Q-8 as the predominant ubiquinone and summed feature 3 (C16 : 1v7c and/or iso-C15 : 0 2-OH) as the major fatty acid(s). It was found to contain small amounts of the fatty acids C18 : 0 and C14 : 0 2-OH, a feature that served to distinguish it from its closest phylogenetic relatives within the genus Massilia. -
Massilia Tieshanensis Sp. Nov., Isolated from Mining Soil
%paper no. ije034306 charlesworth ref: ije034306& New Taxa - Proteobacteria International Journal of Systematic and Evolutionary Microbiology (2012), 62, 000–000 DOI 10.1099/ijs.0.034306-0 Massilia tieshanensis sp. nov., isolated from mining soil Yan Du, Xiang Yu and Gejiao Wang Correspondence State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Gejiao Wang Huazhong Agricultural University, Wuhan, Hubei 430070, PR China [email protected] or [email protected] A bacterial isolate, designated strain TS3T, was isolated from soil collected from a metal mine in Tieshan District, Daye City, Hubei Province, in central China. Cells of this strain were Gram- negative, motile and rod-shaped. The strain had ubiquinone Q-8 as the predominant respiratory quinone, phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the major polar lipids and summed feature 3 (C16 : 1v7c and/or iso-C15 : 0 2-OH), C16 : 0 and C18 : 1v7c as the major fatty acids. The G+C content was 65.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain TS3T was most closely related to Massilia niastensis 5516S-1T (98.5 %), Massilia consociata CCUG 58010T (97.6 %), Massilia aerilata 5516S-11T (97.4 %) and Massilia varians CCUG 35299T (97.2 %). DNA–DNA hybridization revealed low relatedness between strain TS3T and M. niastensis KACC 12599T (36.5 %), M. consociata CCUG 58010T (27.1 %), M. aerilata KACC 12505T (22.7 %) and M. varians CCUG 35299T (46.5 %). On the basis of phenotypic and phylogenetic characteristics, strain TS3T belongs to the genus Massilia, but is clearly differentiated from other members of the genus.