Status of MOX Fuel Fabrication, Utilization, XA0201760 Design and Performance in Lwrs

Total Page:16

File Type:pdf, Size:1020Kb

Status of MOX Fuel Fabrication, Utilization, XA0201760 Design and Performance in Lwrs Status of MOX fuel fabrication, utilization, XA0201760 design and performance in LWRs V. Onoufriev International Atomic Energy Agency, Vienna Abstract. The overview looks at the present status of Pu recycle as MOX fuel in thermal power reactors as presented mainly at the IAEA Symposium on MOX Fuel Cycle Technologies for Medium and Long Term Deployment held in Vienna in May 1999, and some other international meetings. Present status in MOX fuel fabrication, performance and utilization technologies are discussed. Recycling of plutonium as MOX fuel in LWRs has become a mature industry. The technology is well understood and the facilities, institutions and procedures are in place (capacity extensions being planned) to meet the anticipated arisings of separated plutonium from the production of nuclear power. MOX fuel performance and its modelling are discussed in comparison with those of UO2 fuel. 1. INTRODUCTION Today the plutonium recycling with LWRs has evolved to industrial level in some countries relying on the recycling policy. This happened mainly because of the worldwide delays in development of fast reactor's programmes. More than 30 years of reactor experience using MOX fuel as well as the fabrication of 2 000 MOX assemblies with the use of 85 t of Pu separated from spent fuel from power reactors and good performance records indicate now that the recycling of plutonium as MOX fuel in LWRs has become a mature industry. The technology is well understood and the facilities, institutions and procedures are in place to meet the anticipated arisings of separated plutonium from the production of nuclear power. The number of countries engaged on plutonium recycling could be increasing in the near future, aiming the reduction of stockpiles of separated plutonium from earlier and existing reprocessing contracts. Economic and strategic considerations being the main factors on which to base such decision to use MOX. The reactor-based weapons-grade plutonium disposition approaches proposed by the US and Russia are build upon proven commercial MOX fuel technologies and may further contribute to optimization of Pu recycling technologies. An International Symposium on MOX Fuel Cycle Technologies for Medium and Long Term Deployment, organized by the IAEA in co-operaton with OECD/NEA and held in Vienna in May 1999, was a milestone to look in past, present and future of Pu recycling in nuclear power reactors [2]. 2. MOX FUEL FABRICATION Currently, six plants for MOX fuel fabrication are in operation in Belgium, France, Japan, UK and India (see Table I, [1]). Worldwide MOX fuel fabrication capacity at the end of 1998 amounts about 220 tHM per year. In the UK, a large scale MOX fabrication plant (SMP) has been constructed and is awaiting consent to start operation. In Russia, the first pilot plant (with a capacity of 101 HM/y) for fabricating MOX fuel is under construction inside the RT-1 plant. A new MOX plant (Complex 300) is planned to commence operation in 2010 [3,4]. There are plans for the construction of a new MOX plant in Japan and of a demonstration facility in China. The available MOX fabrication capacities worldwide are projected to be over 600 tHM/y in the coming decade owing to deployment of new facilities and expansion of capacities of existing facilities, where it is anticipated that some 25 to 30 t of plutonium will be recycled per/year. 155 Fuel fabrication records as of 31 December 1998 for LWRs and FBRs [5] have shown that more than 550,000 LWR fuel rods for more than 3 300 fuel assemblies were produced in facilities outside the United States [5]. FBR MOX production totals about 680 000 rods for more than 3 900 assemblies [5]. TABLE I. MOX fuel fabrication capacity (tHM/y), as of end 1998 [1] Country Site Plant 1998 2000 2005 2010 Belgium Dessel P0 35 40 40 40 France Cadarache CFC 35 40 40 40 Marcoule MELOX 120 200a 200a 250a India Tarapur AFFF 5 10 10 10 Japan Tokai PFPF 15b 15b 5C 5C Rokkasho- MOX FFF - - 100 100 mura Russian Fed. Chelyabinsk inside RT-1 - - 10 10 Chelyabinsk Mayak, Complex 300 40 UK Sellafield MDF 8 8 8 8 Sellafield SMP - 120 120 120 Total 218 433 533 623 a date not fixed. b forATRFugenandFBRMonju. c forFBRMonju. As MOX fabrication has progressed from its initial stages several process improvements have been made, especially in the area of powder production. The objectives of these improvements included producing a powder product with improved characteristics for pelletizing and improved fuel performance, especially related to fission gas release. [6-10]. Reduction of the size of Pu agglomerates is an important task in powder technology optimization^, 11-13]. Enlargement of UO2 grain size and diminishing Pu/U diffusion coefficients might be obtained through the use of small quantities (500-2000 ppm) of oxide (Ti, Cr and some others) additives [10,12]. Process improvements have also been made with respect to reducing powder dispersion, thereby improving hold-up and personnel radiation protection [5, 11, 12]. Waste handling and scrap recycle have also been improved [5, 10, 11]. These are both important with respect to cost and safeguards. Several aqueous [14, 15] and pyrochemical [16] processes of conversion of weapons-grade plutonium to MOX are under investigation in Russia. Ammonium co-precipitation of Pu and U with parallel involvement of surface active substances (SAS) is identified as the most promising (GRANAT, Combine "Majak"). A pyrochemical technology of the conversion of metallic Pu into MOX FBR fuel in molten salts has been developed in NIAR, Dimitrovgrad [16]. Vibro-pack method is used instead of pelletizing process. The letter is under development now to fabricate MOX fuel rods for WWER reactors. IAEA/EURATOM safeguards monitoring in MOX fabrication facilities is well organized [5, 17-19]. An unattended NDA measurement system recently deployed at Belgonucleaire was described and the savings in cost and personnel time resulting from use of the system were presented. The IAEA's Tank Monitoring System (TAMS) and the benefits of its use with respect to timely (every 15 seconds) and accurate data collection was noticed. The safeguards 156 will be strengthened with the enforcement of the IAEA's 93+2 Programme, resulting in additional constraints. 3. MOX FUEL UTILIZATION Today, more than 30 thermal reactors have used MOX-fuel complying with a partial core loading pattern [20]. The main part of the NPP using MOX are 33 PWRs (19 in France [12], 9 in Germany, 2 in Belgium and 3 in Switzerland), but 2 BWRs use also MOX (in Germany). Table 2 lists the current status of MOX fuel utilization in thermal reactors worldwide. The commercial application of MOX fuel in LWRs has been started in the mid 1980s when some modification or withdrawal of fast reactor programmes was enforced. The developed technologies of recycling and fuel fabrication were applied for Pu-recycling in LWR fuel, in the mean time focusing on stabilisation of the separated plutonium inventory. Currently, the use of MOX fuel has been established on an industrial scale in a number of countries. In Belgium, France, Germany, Japan and Switzerland, a considerable number of thermal power reactors (PWRs and BWRs) are either licensed (i.e. 40, of which 34 have MOX fuel loaded) or have applied for a license (about 13) to use MOX fuel at levels of up to 30% of the reactor core. Up to now, more than 2000 FAs have been loaded in LWRs in Europe [20, 21]. In France, since 1987 about 1200 MOX assemblies have been loaded in 19 PWRs (900 MWe - 17x17), and about 600 FAs achieved 3 cycles, and a few FAs were authorized for 4 and 5 cycles for experimental purposes [12]. In Germany, since 1985, about 800 MOX FAs have been loaded in 9 PWRs (16x16 and 18x18) and 2 BWRs : Gundremmingen B and C (1344 MWe-9x9). In Switzerland, about 160 MOX FAs have been loaded in PWRs : since 1978 in Beznau 1 and 2 (PWR 350MWe - 14x14) and recently in Gosgen (PWR lOOOMWe - 15x15). In Belgium, since 1995 about 70 MOX FAs have been loaded in Doel 3 and Tihange 2 (PWR lOOOMWe - 17x17). Loading of MOX FAs are postponed in Japan after falsification of MOX pellets by BNFL. Experience with MOX reloads in BWRs and PWRs from 1981 to 1988 is given in Table 3 [20,21]. TABLE II. Present Status of large scale MOX fuel utilisation in thermal reactorsa Number ofThermal Reactors Operating Licensed to use Loaded with Applied for reactors MOX FAs MOX FAs MOX license Belgium 7 2 2 France 57 20 19 8b Germany 19 12 11 4 Japan 52 3 1 1 Switzerland 5 3 3 Total 130 40 36 13 a There are a number of reactors, notably in Europe and India, not included in this Table, which are licensed to use MOX fuel on an experimental basis; b Technically capable reactors planned to be licensed. Highest MOX fuel burnup (42-60 MWd/kg HM) was reached in Switzerland, Beznau 1 and 2 [20]. In Germany, mean MOX FA discharge exposure is about 40 GWd/t, maximum MOX FA exposure is about 48 GWd/t in commercial operation. The trend in this field is increasing and now many of the MOX FAs under irradiation will reach mean discharge exposure around 48 GWd/t. In France, the average burnup rate per MOX reload is maintained at around 157 37 MWd/kg HM and the maximum assembly burn-up rate at 41 MWd/kg HM, compared with the 50 MWd/kg HM reached by UO2 assemblies obtained in annual cycle (3 cycles for MOX and 4 cycles for UO2).
Recommended publications
  • Advanced Nuclear Power and Fuel Cycle Technologies: Outlook and Policy Options
    Order Code RL34579 Advanced Nuclear Power and Fuel Cycle Technologies: Outlook and Policy Options July 11, 2008 Mark Holt Specialist in Energy Policy Resources, Science, and Industry Division Advanced Nuclear Power and Fuel Cycle Technologies: Outlook and Policy Options Summary Current U.S. nuclear energy policy focuses on the near-term construction of improved versions of existing nuclear power plants. All of today’s U.S. nuclear plants are light water reactors (LWRs), which are cooled by ordinary water. Under current policy, the highly radioactive spent nuclear fuel from LWRs is to be permanently disposed of in a deep underground repository. The Bush Administration is also promoting an aggressive U.S. effort to move beyond LWR technology into advanced reactors and fuel cycles. Specifically, the Global Nuclear Energy Partnership (GNEP), under the Department of Energy (DOE) is developing advanced reprocessing (or recycling) technologies to extract plutonium and uranium from spent nuclear fuel, as well as an advanced reactor that could fully destroy long-lived radioactive isotopes. DOE’s Generation IV Nuclear Energy Systems Initiative is developing other advanced reactor technologies that could be safer than LWRs and produce high-temperature heat to make hydrogen. DOE’s advanced nuclear technology programs date back to the early years of the Atomic Energy Commission in the 1940s and 1950s. In particular, it was widely believed that breeder reactors — designed to produce maximum amounts of plutonium from natural uranium — would be necessary for providing sufficient fuel for a large commercial nuclear power industry. Early research was also conducted on a wide variety of other power reactor concepts, some of which are still under active consideration.
    [Show full text]
  • MOX Fuel Program: Current Plans and Controversy
    MOX Fuel Program: Current Plans and Controversy The Mixed Oxide (MOX) Fuel Fabrication Facility at Savannah River, South Carolina is intended to manufacture nuclear fuel from surplus weapons-grade plutonium for use in commercial nuclear energy reactors. However, the project has faced serious delays and massive cost overruns – and currently has no customers for its proposed fuel. As a result, the President’s FY17 Budget Proposal requests $270 million to begin closing the project, while diluting the plutonium for transfer to the Waste Isolation Pilot Plant (WIPP) in New Mexico, a more cost-efficient option. What Is It? The MOX facility at Savannah River was designed to repurpose 3.5 tonnes of surplus weapons-grade plutonium yearly. This facility was intended to play a key role in the United States’ fulfillment of the 2000 Plutonium Management and Disposition Agreement (PMDA) between Russia and the U.S., which affirms each country’s commitment to dispose of 34 metric tonnes of plutonium, enough collectively for 17,000 nuclear weapons. Challenges: The MOX Fuel Fabrication Facility’s anticipated date of operation was 2007, with plutonium disposition set to end in 2020. Multiple delays in construction led to significant cost overruns, with beginning operations delayed until 2019. Initially valued at $2.898 billion (2016 dollars), the total cost of the project skyrocketed to $15.683 billion as a result of construction delays and program mismanagement. This estimate, however, assumes a steady rate of funding, and fluctuations in funding levels could exacerbate delays and cost overruns. Even if completed, the site currently boasts zero customers for MOX fuel.
    [Show full text]
  • Management of Reprocessed Uranium Current Status and Future Prospects
    IAEA-TECDOC-1529 Management of Reprocessed Uranium Current Status and Future Prospects February 2007 IAEA-TECDOC-1529 Management of Reprocessed Uranium Current Status and Future Prospects February 2007 The originating Section of this publication in the IAEA was: Nuclear Fuel Cycle and Materials Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria MANAGEMENT OF REPROCESSED URANIUM IAEA, VIENNA, 2007 IAEA-TECDOC-1529 ISBN 92–0–114506–3 ISSN 1011–4289 © IAEA, 2007 Printed by the IAEA in Austria February 2007 FOREWORD The International Atomic Energy Agency is giving continuous attention to the collection, analysis and exchange of information on issues of back-end of the nuclear fuel cycle, an important part of the nuclear fuel cycle. Reprocessing of spent fuel arising from nuclear power production is one of the strategies for the back end of the fuel cycle. As a major fraction of spent fuel is made up of uranium, chemical reprocessing of spent fuel would leave behind large quantities of separated uranium which is designated as reprocessed uranium (RepU). Reprocessing of spent fuel could form a crucial part of future fuel cycle methodologies, which currently aim to separate and recover plutonium and minor actinides. The use of reprocessed uranium (RepU) and plutonium reduces the overall environmental impact of the entire fuel cycle. Environmental considerations will be important in determining the future growth of nuclear energy. It should be emphasized that the recycling of fissile materials not only reduces the toxicity and volumes of waste from the back end of the fuel cycle; it also reduces requirements for fresh milling and mill tailings.
    [Show full text]
  • Appendix B Differences Between Thermal and Radiation Properties of Mixed Oxide and Low-Enriched Uranium Radioactive Materials
    APPENDIX B DIFFERENCES BETWEEN THERMAL AND RADIATION PROPERTIES OF MIXED OXIDE AND LOW-ENRICHED URANIUM RADIOACTIVE MATERIALS The contents considered in this Standard Review Plan (SRP) appendix are unirradiated mixed oxide (MOX) radioactive material (RAM), in the form of powder, pellets, fresh fuel rods, or fresh reactor fuel assemblies. Unirradiated MOX RAM will also be referred to in this appendix as MOX fresh fuel. This appendix summarizes the relative degree of differences between the thermal and radiation properties of the various MOX RAM contents relative to similar properties for analogous low-enriched uranium (LEU) RAM contents. MOX fresh fuel can be made with plutonium having various compositions of plutonium isotopes. The discussion in this appendix makes use of the 3013 Standard (DOE 2012), which specifies the typical grades of plutonium that are used to make the MOX fresh fuel. The actual plutonium compositions found in practice may not match these compositions exactly, but these grades can be considered typical for the purposes of this appendix. Table B–6 of the 3013 Standard gives weight percents for various plutonium isotopes in various grades of plutonium. They are reproduced in the following table (Table B–1) as representative values for typical grades of plutonium that might be used to fabricate MOX fresh fuel. Pure plutonium-239 has been included to contrast the effect of the other plutonium isotopes. Note that in addition to the isotopes identified in Table B–1, plutonium will contain plutonium-236 and americium-241 (from plutonium-241 decay). Initially, it is expected that MOX fresh fuel will be fabricated using weapons grade (WG) plutonium.
    [Show full text]
  • Framatome ANP MOX Fuel Design
    BAW-10238(NP) Revision 0 43-10238NP-00 MOX Fuel Design Report March 2002 Framatome ANP, Inc. U.S. Nuclear Regulatory Commission Report Disclaimer Important Notice Regarding the Contents and Use of This Document Please Read Carefully This technical report was derived through research and development programs sponsored by Framatome ANP, Inc. It is being submitted by Framatome ANP, Inc. to the U.S. Nuclear Regulatory Commission as part of a technical contribution to facilitate safety analyses by licensees of the U.S. Nuclear Regulatory Commission which utilize Framatome ANP, Inc. fabricated reload fuel or technical services provided by Framatome ANP, Inc. for light water power reactors and it is true and correct to the best of Framatome ANP, Inc.'s knowledge, information, and belief. The information contained herein may be used by the U.S. Nuclear Regulatory Commission in its review of this report and, under the terms of the respective agreements, by licensees or applicants before the U.S. Nuclear Regulatory Commission which are customers of Framatome ANP, Inc. in their demonstration of compliance with the U.S. Nuclear Regulatory Commission's regulations. Framatome ANP, Inc.'s warranties and representations concerning the subject matter of this document are those set forth in the agreement between Framatome ANP, Inc. and the Customer pursuant to which this document is issued. Accordingly, except as otherwise expressly provided in such agreement, neither Framatome ANP, Inc. nor any person acting on its behalf: a. makes any warranty, or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document will not infringe privately owned rights; or b.
    [Show full text]
  • A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies
    energies Review A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies Laura Rodríguez-Penalonga * ID and B. Yolanda Moratilla Soria ID Cátedra Rafael Mariño de Nuevas Tecnologías Energéticas, Universidad Pontificia Comillas, 28015 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-91-542-2800 (ext. 2481) Received: 19 June 2017; Accepted: 6 August 2017; Published: 21 August 2017 Abstract: Nuclear power has been questioned almost since its beginnings and one of the major issues concerning its social acceptability around the world is nuclear waste management. In recent years, these issues have led to a rise in public opposition in some countries and, thus, nuclear energy has been facing even more challenges. However, continuous efforts in R&D (research and development) are resulting in new spent nuclear fuel (SNF) management technologies that might be the pathway towards helping the environment and the sustainability of nuclear energy. Thus, reprocessing and recycling of SNF could be one of the key points to improve the social acceptability of nuclear energy. Therefore, the purpose of this paper is to review the state of the nuclear waste management technologies, its evolution through time and the future advanced techniques that are currently under research, in order to obtain a global vision of the nuclear fuel cycle strategies available, their advantages and disadvantages, and their expected evolution in the future. Keywords: nuclear energy; nuclear waste management; reprocessing; recycling 1. Introduction Nuclear energy is a mature technology that has been developing and improving since its beginnings in the 1940s. However, the fear of nuclear power has always existed and, for the last two decades, there has been a general discussion around the world about the future of nuclear power [1,2].
    [Show full text]
  • Nuclear Fuel Cycles Technology Assessment
    Clean Power Quadrennial Technology Review 2015 Chapter 4: Advancing Clean Electric Power Technologies Technology Assessments Advanced Plant Technologies Biopower Carbon Dioxide Capture and Storage Clean Power Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle U.S. DEPARTMENT OF Wind Power ENERGY Clean Power Quadrennial Technology Review 2015 Nuclear Fuel Cycles Chapter 4: Technology Assessments Introduction and Background The Nuclear Fuel Cycle (NFC) is defined as the total set of operations required to produce fission energy and manage the associated nuclear materials. It can have different attributes, including the extension of natural resources, or the minimization of waste disposal requirements. The NFC, as depicted in Figure 4.O.1, is comprised of a set of operations that include the extraction of uranium (U) resources from the earth (and possibly from seawater), uranium enrichment and fuel fabrication, use of the fuel in reactors, interim storage of used nuclear fuel, the optional recycle of the used fuel, and the final disposition of used fuel and waste forms from the recycling processes. Thorium (Th) fuel cycles have been proposed also, but have not been commercially implemented). Figure 4.O.1 Schematic of the uranium based Nuclear Fuel Cycle 1 Quadrennial Technology Review 2015 Clean Power TA 4.O: Nuclear Fuel Cycles The nuclear fuel cycle is often grouped into three classical components (front-end, reactor, and back-end): Front End: The focus of the front end of the nuclear fuel cycle is to deliver fabricated fuel to the reactor.
    [Show full text]
  • The Fuel Cycle Implications of Nuclear Process Heat
    energies Article The Fuel Cycle Implications of Nuclear Process Heat Aiden Peakman 1,2,∗ and Robert Gregg 1 1 National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK; [email protected] 2 School of Engineering, University of Liverpool, Liverpool L69 3GH, UK * Correspondence: [email protected] Received: 13 August 2020; Accepted: 11 November 2020; Published: 20 November 2020 Abstract: International and UK fuel cycle scenario analyses performed to date have focused on nuclear plants producing electricity without considering in detail the other potential drivers for nuclear power, such as industrial process heat. Part of the reason behind the restricted applications of nuclear power is because the assumptions behind the future scenario are not fully captured, for example how big are demands from different sectors? Here we present a means to fully capture the potential opportunities for nuclear power using Sankey diagrams and then, using this information, consider for the first time in the UK the fuel cycle implications of decarbonising industrial heat demand in the year 2050 with nuclear power using the ORION fuel cycle code to study attributes related to spent fuel, uranium demand and decay heat from the spent fuel. We show that even in high industrial energy demand scenarios, the sensitivity of spent fuel masses and decay heat to the types of reactor deployed is relatively small compared to the greater fuel cycle demands from large-scale deployment of nuclear plants for electricity production. However, the sensitivity of spent fuel volumes depends heavily on the extent to which High Temperature Reactor and Light Water Reactor systems operating on a once-through cycle are deployed.
    [Show full text]
  • Pub1489 Web.Pdf
    P1489_cover.indd 1 2011-04-13 09:40:05 IAEA NUCLEAR ENERGY SERIES PUBLICATIONS STRUCTURE OF THE IAEA NUCLEAR ENERGY SERIES Under the terms of Articles III.A and VIII.C of its Statute, the IAEA is authorized to foster the exchange of scientific and technical information on the peaceful uses of atomic energy. The publications in the IAEA Nuclear Energy Series provide information in the areas of nuclear power, nuclear fuel cycle, radioactive waste management and decommissioning, and on general issues that are relevant to all of the above mentioned areas. The structure of the IAEA Nuclear Energy Series comprises three levels: 1 — Basic Principles and Objectives; 2 — Guides; and 3 — Technical Reports. The Nuclear Energy Basic Principles publication describes the rationale and vision for the peaceful uses of nuclear energy. Nuclear Energy Series Objectives publications explain the expectations to be met in various areas at different stages of implementation. Nuclear Energy Series Guides provide high level guidance on how to achieve the objectives related to the various topics and areas involving the peaceful uses of nuclear energy. Nuclear Energy Series Technical Reports provide additional, more detailed, information on activities related to the various areas dealt with in the IAEA Nuclear Energy Series. The IAEA Nuclear Energy Series publications are coded as follows: NG — general; NP — nuclear power; NF — nuclear fuel; NW — radioactive waste management and decommissioning. In addition, the publications are available in English on the IAEA’s Internet site: http://www.iaea.org/Publications/index.html For further information, please contact the IAEA at PO Box 100, Vienna International Centre, 1400 Vienna, Austria.
    [Show full text]
  • Minor Actinides Transmutation in Candidate Accident Tolerant Fuel
    Minor Actinides Transmutation in Candidate Accident Tolerant Fuel- Claddings U3Si2-FeCrAl and U3Si2-SiC Shengli Chen1,2 and Cenxi Yuan1,* 1 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, China 2 CEA, Cadarache, DEN/DER/SPRC/LEPh, 13108 Saint Paul Les Durance, France * Corresponding author. E-mail address: [email protected] Abstract An advanced transmutation method is suggested that the long-lived Minor Actinides (MAs) in the spent fuel can be efficiently transmuted in the candidate Accident Tolerant Fuel (ATF). The transmutation of MAs is investigated through the Monte Carlo simulations in two potential fuel-claddings of ATF, U3Si2-FeCrAl and U3Si2-SiC. The critical loadings of MAs are determined through the Linear Reactivity Model (LRM) in order to keep the same reactivity as the current UO2-zircaloy system at the End of Cycle (EOC). In all cases, excellent transmutation efficiencies are found for the most important three MAs, 237Np, 241Am, and 243Am, of which the total transmutation rates are around 60%, 90%, and 60%, respectively. If 237 only the longest-lived isotope Np is considered, one U3Si2-SiC assembly can transmute 237Np from six normal assemblies. The loading of MAs has little influences on the neutronic properties, such as the power distributions inside an assembly and inside a fuel rod. The transmutation of MAs in the ATF assembly is shown to be more efficient and safe comparing with the normal assembly, while other important properties are kept, such as the cycle length and the power distribution. Keywords: Minor Actinide, Transmutation, Accident Tolerant Fuel, U3Si2, FeCrAl, SiC 1.
    [Show full text]
  • Comparison of the Proposed and Alternative Mox Fuel Fabrication Facility Plutonium-Polishing Processes
    COMPARISON OF THE PROPOSED AND ALTERNATIVE MOX FUEL FABRICATION FACILITY PLUTONIUM-POLISHING PROCESSES INTRODUCTION The U.S. Nuclear Regulatory Commission (NRC) is currently reviewing a license application from the consortium of Duke Cogema Stone & Webster (DCS) to build a mixed oxide (MOX) fuel fabrication facility (MFFF) at the Department of Energy’s (DOE’s) Savannah River Site (SRS). To aid in the NRC’s technical and environmental review for acceptability to license, this study has been tasked with obtaining and reviewing the available information and literature regarding the aqueous (or wet) and dry plutonium polishing processes for a comparison of the efficiencies, waste generation, environmental effects, cost, throughput, and other issues. Open sources were used for the technical information presented in this report, which included aqueous process information from documents provided by DCS to the NRC and dry process information from publically available documents. As presented in the MFFF Construction Authorization Request (CAR) and Environmental Report (ER), the aqueous plutonium-polishing technology using solvent extraction is the preferred process. In addition, another aqueous process using an ion exchanger for the removal of impurities was presented as an alternative in DOE documents. DOE also funded the research and development of a dry plutonium- polishing process principally through the Los Alamos National Laboratory (LANL). Each process will be reviewed and documented for a comparison of plutonium-polishing processes. The following sections provide a summary of each process from its reference source material, a comparison between the waste streams of each alternative, and the conclusions that can be drawn from information currently available and, if necessary, any lack of information that may affect the conclusions.
    [Show full text]
  • Plutonium Recycling in Lwrs
    Plutonium recycling in LWRs Jan Willem Storm van Leeuwen independent consultant member of the Nuclear Consulting Group September 2019 [email protected] Note In this document the references are coded by Q-numbers (e.g. Q6). Each reference has a unique number in this coding system, which is consistently used throughout all publications by the author. In the list at the back of the document the references are sorted by Q-number. The resulting sequence is not necessarily the same order in which the references appear in the text. m15MOXlwr20190922 1 MOX fuel in LWRs The plutonium recovered from spent fuel, usually labeled reactor-grade plutonium Purg could be used to fabricate MOX (Mixed OXide) fuel elements consisting of natural or depleted uranium oxide and plutonium oxide instead of a higher content of uranium-235, to be used in light-water reactors (LWRs). At present about 30 nuclear power plants, mostly in Europe, are using MOX fuel elements, not more than about 30% of the core. Special reactor designs are required to replace all enriched uranium fuel in the core fully by MOX fuel. Reprocessing of commercial nuclear fuel to make MOX is done in the United Kingdom and France, and to a lesser extent in Russia, India and Japan [wiki-mox 2017] Q741. Plutonium from reprocessed fuel is usually fabricated into MOX as soon as possible to avoid problems with the decay of short-lived isotopes, in particular Pu-241 that decays (half-life 14.1 years) to americium-241, a strong gamma emitter. Within 5 years typical reactor-grade plutonium would contain too much Am-241 to safely handle [WNA-mox 2016] Q246.
    [Show full text]