2011 Postconsumer Plastics Recycling in Canada

Total Page:16

File Type:pdf, Size:1020Kb

2011 Postconsumer Plastics Recycling in Canada 2011 Postconsumer Plastics Recycling in Canada December 2012 Prepared by Moore Recycling Associates for the Canadian Plastics Industry Association Moore Recycling Associates Inc PO Box 1327 Sonoma, CA 95476 T 707-935-3390 F 707-935-1998 www.MooreRecycling.com 2011 Postconsumer Plastics Recycling in Canada 1 2011 Postconsumer Plastics Recycling in Canada Introduction This is the third year that Moore Recycling Associates has conducted a survey to determine the amount of postconsumer plastic recovered in Canada for recycling. This report shows how much Canadian postconsumer plastic was collected and reclaimed domestically—in Canada or the U.S.—and how much was exported overseas. This study is sponsored by the Canadian Plastic Industry Association (CPIA) and is made possible by the businesses that cooperated by providing data. Executive Summary In 2011, a minimum of 268.5 million kilograms of postconsumer (including post commercial)1 plastic material was collected for recycling in Canada. As expected, most of that was plastic bottles, and the remainder was non-bottle rigid plastic, foam or film plastic. This represents an increase of 24% over what was reported in 2010. Postconsumer Plastic Recovered Year-over-Year (kg) Year Exported Purchased for processing in Destination Total Canada or the United States Unknown 2011 33,861,693 227,964,334 6,707,288 268,533,314 2010 34,727,931 177,125,078 5,328,610 217,181,619 2009 22,168,450 157,173,715 8,762,125 188,104,289 The increase is due to an increase in recovery and continued progress in getting companies to report this data. Overall, 85% of the material reported was reclaimed in Canada or the U.S., and 13% was exported overseas. The destination is unknown for the remaining 2%. 1 Throughout this report the term “postconsumer” refers to used plastics that have served their intended purpose; this includes both plastics used by consumers and commercial plastics used by businesses (also referred to as post- commercial). Commercial materials are usually recovered outside of curbside or drop off collection programs and include items such as totes, pallets, crates, film, and other commercial packaging.This report does not include post-industrial recycling (materials generated in manufacturing and converting processes, such as manufacturing scrap and trimmings/ cuttings). Moore Recycling Associates Inc, Sonoma CA 95476 www.MooreRecycling.com 2011 Postconsumer Plastics Recycling in Canada 2 U.S. companies purchased 51.7 million kilograms of postconsumer plastic from Canada for processing in the U.S. The material purchased by U.S. reclaimers combined with the plastic exported overseas resulted in 85 million kilograms of postconsumer plastic leaving the country an increase of 3% over what was reported in 2010. Overall, 66%—more than 176 million kilograms— of Canadian-sourced recycled plastic, and an additional 75 million kilograms of US sourced plastic, was reclaimed in Canada. This is a voluntary survey, therefore this report represents the minimum known to be recovered for recycling. To obtain the data for this report, Moore Recycling conducted a survey of over 500 companies that are involved in the flow of recycled plastic in North America. These companies are made up of reclaimers, exporters, brokers, Material Recovery Facilities (MRFs) and other handlers of scrap plastic. One hundred and twenty seven of the companies surveyed are Canadian companies. The significant majority of postconsumer plastic material collected for recycling in Canada is handled by a handful of large reclaimers, the rest by medium to small businesses. Non- PET bottle reclamation data was received from 28 reclaimers: 17 of which are in Canada and 11 in the U.S. Data on all plastic material types was provided by 18 U.S. and Canadian plastic exporters. Moore Recycling received PET bottle and non-bottle reclamation data from the National Association for PET Container Resources (NAPCOR). Data gathered in the survey is cross checked with data available from Canadian Provinces. We continue our on-going market research and encourage full participation in the survey in order to provide precise findings in future reports. According to feedback provided by Canadian reclaimers the supplies are tight for both bottles, and clean, clear film. Reclaimers also noted the issues of bale contamination and finding reasonable priced feedstock. The export market reported the challenges of strong domestic demand in 2011, and noted it is becoming more difficult to market lower quality material to China. Demand and pricing were generally strong throughout the year, primarily driven by the strong interest in—and support of—sustainability goals in Canada. Rigid (Bottle and Non-Bottle) Plastic Recovered By Resin (kg) PET HDPE PP LDPE PVC PS Other Total 113,648,333 79,325,473 26,244,748 205,322 287,732 1,018,741 10,701,099 231,431,448 This table shows the breakdown of rigid plastic packaging by resin. Resin-specific data for film—which makes up the additional 37.1 million kilograms of postconsumer plastic recovered in Canada in 2011—is not available, but most recovered film is PE (Polyethylene). Moore Recycling Associates Inc, Sonoma CA 95476 www.MooreRecycling.com 2011 Postconsumer Plastics Recycling in Canada 3 The following chart shows the breakdown of material collected by major category. Postconsumer Plastic Recovered in 2011 by Major Category (kg) Foam 752,654 Film 37,101,867 Bottles 179,747,823 Non-Bottle Rigid 50,930,972 The data reported in 2011 represents an increase of 29.3 million kilograms (19%) for bottles, and an increase of 21 million kilograms (70%) for non-bottle rigid plastic. The non-bottle increase is primarily due to more plastic segregated by resin being reported in 2011. The film recycling reported remained about the same with a 1% Year Bottles Non-Bottle Rigid or 272 thousand kilogram increase. The survey 2011 179,747,823 50,930,972 specifically asked for data on foam collected in 2011, thus foam is reported separately from non-bottle rigid 2010 150,439,320 29,912,342 recycling for 2011.2 Bottles Based on the consistency in year-over-year responses, the increase in plastic bottle collection is primarily due to an increase in recovery. There was a 14.7 million kilogram increase in PET Bottle recycling according to the same set of PET bottle reclaimers responding in 2010 and 2011. A few additional exporters reported PET bottle exports in 2011, but the overall total for export was slightly under 2010. The increase for HDPE bottles (12.9 million kilograms) was 2 Expanded Polystyrene (EPS) was reported as non-bottle rigid Polystyrene (PS) prior to 2011. Moore Recycling Associates Inc, Sonoma CA 95476 www.MooreRecycling.com 2011 Postconsumer Plastics Recycling in Canada 4 Year PET Bottles HDPE Bottles reported by the same domestic reclaimers that reported for 2010. The export of HDPE bottles reported 2011 108,547,368 66,527,789 decreased in 2011. Exports of HDPE bottles now only 2010 93,856,842 53,645,714 make up 2% of all HDPE bottles reported. PET bottles are the highest volume plastic collected for recycling. In 2011, PET bottle collection and domestic reclamation capacity were in equilibrium in Canada. The dominant end use for recycled PET bottles continues to be fiber, followed respectively by food & beverage bottles, sheet & film, strapping, and non-food bottles. Engineered resin, and other products make up a small percentage of end uses for recycled PET (RPET). HDPE bottles are the second highest volume of recycled plastic. HDPE bottle capacity3 is estimated at 106 million kilograms for 2011, with an 80% utilization of that capacity. This represents an increase in HDPE bottle capacity of 29 million kilograms over 2010. The primary end use for natural bottles is new bottles, according to the Canadian reclaimers that reported. The primary end use for colored HDPE bottles is pipe. Colored HDPE bottles were also used to manufacture film/sheet, automotive applications, lawn and garden products and, to a lesser extent, lumber/decking. Non-Bottle Rigid Plastic Non-bottle rigid plastic saw a substantial increase in 2011 due to both an increase in recovery year-over-year and to some segregated resin material that was likely recycled but not reported in 2010. That said, the non-bottle rigid recovery represented in this report is conservative. The majority of the curbside non-bottle rigid plastic recovered is captured (although it is possible there is more going to the overseas export market than reported), Year Non-Bottle Rigid but it is quite likely that non-bottle rigid material from commercial recovery is under-represented in this report. The majority of non- 2011 50,930,972 bottle rigid plastic collected for recycling is made up of HDPE and 2010 29,912,342 PP. Half the non-bottle HDPE comes from mixed bales (primarily All Rigid, Pre-picked and Tubs & Lids) and the other half comes from HDPE injection drums, buckets, and crates. Seventy-nine percent of the non-bottle PP comes from segregated resins. The majority of the remaining non-bottle PP comes from the mixed bales mentioned above for HDPE. Many organizations in the U.S. and Canada are working together to help make progress in recycling more PET packaging (including items such as clamshells, deli containers, and cups), and according to NAPCOR, “2011 saw the first significant amount of PET thermoformed packaging moving through the system in both the US and Canada.”4 3 Capacity for processing bottles often overlaps with capacity to process plastic non-bottle rigid plastic and/or film. Thus, adding the bottle, non-bottle rigid and film capacities from this report together could result in double counting some capacity. 4 2011 Report on Post Consumer PET Container Recycling Activity Moore Recycling Associates Inc, Sonoma CA 95476 www.MooreRecycling.com 2011 Postconsumer Plastics Recycling in Canada 5 A very conservative estimate for non-bottle rigid plastic reclamation capacity is 50.4 million kilograms per year.
Recommended publications
  • PET Bottle Recycling - Wikipedia
    7/24/2018 PET bottle recycling - Wikipedia PET bottle recycling Bottles made of polyethylene terephthalate (PET, sometimes PETE) can be used to make lower grade products, such as carpets. To make a food grade plastic, the bottles need to be hydrolysed down to monomers, which are purified and then re- polymerised to make new PET. In many countries, PET plastics are coded with the resin identification code number "1" inside the universal recycling symbol, usually located on the bottom of the container. Contents Usage of PET Process Post-consumer waste Sorting Processing for sale Further treatment Melt filtration Drying polyester Global statistics Re-use of PET bottles See also References External links Usage of PET PET is used as a raw material for making packaging materials such as bottles and containers for packaging a wide range of food products and other consumer goods. Examples include soft drinks, alcoholic beverages, detergents, cosmetics, pharmaceutical products and edible oils. PET is one of the most common consumer plastics used.[1] Polyethylene terephthalate can also be used as the main material in making water-resistant paper.[2] Process Post-consumer waste The empty PET packaging is discarded by the consumer, after use and becomes PET waste. In the recycling industry, this is referred to as "post-consumer PET." Many local governments and waste collection agencies have started to collect post- consumer PET separately from other household waste. Besides that there is container deposit legislation in some countries which also applies to PET bottles. It is debatable whether exporting circulating resources that damages the domestic recycling industry is acceptable or not.[4] In Japan, overseas market pressure led to a significant cost reduction in the domestic market.
    [Show full text]
  • The Path to PET Bottle Recycling Made Easier with the Avery Dennison Cleanflake™ Portfolio. Label Material Advances Allow Brand Owners to Improve Recyclability
    The Path to PET Bottle Recycling Made Easier with the Avery Dennison CleanFlake™ Portfolio. Label material advances allow brand owners to improve recyclability Advances by Avery Dennison have leveled the playing field for PET recyclability and shelf-impact. Traditionally there has been a trade-off between the two; however, the Avery Dennison CleanFlake™ Portfolio is designed specifically for the PET (polyethylene terephthalate) recycling stream. PET is a popular plastic package for food and non-food products because of its strength, thermo-stability and transparency. Bottle-to-bottle recycling reduces landfills, enables up-cycling into food-grade rPET and capitalizes on the renewable energy in a PET bottle. Brand owners, packaging designers, raw material suppliers, converters, retailers, consumers and waste management companies collectively impact sustainability. While the overall goal is to make it easier to recover more materials, brand owners look beyond package design. They recognize sustainability can offer a significant point of differentiation as retailers’ demands and consumer awareness about the environment and natural resources carry increasing influence towards the brands that are put on store shelves and in shopping bags. “NAPCOR applauds Avery Dennison and its customers for addressing a critical impediment to the efficient recycling of PET containers,” said Mike Schedler, National Association for PET Container Resources (NAPCOR) Director of Technology. “The popularity of pressure-sensitive labels makes it imperative that they be successfully removed as part of the standard PET reclamation process to increase their recyclability. We hope other label manufacturers and brand owners follow Avery Dennison’s lead.” Promoting Sustainability, Creating Shelf Appeal and Capturing Share Whether it’s a private label or a national brand, consumers will only behind its latest pressure-sensitive label constructions, which are spend about 2.5 seconds at the shelf deciding what product to designed to improve recycling efficiencies and the overall quality of buy.
    [Show full text]
  • 2015 Rate Report
    2015 PET Recycling Rate Report Register for Upcoming Webinars! Today’s Presenters Kate Eagles NAPCOR Program Director Kara Pochiro APR Communications Director SteveResa DiminoAlexander APRNAPCOR Executive Director of DirectorPublic Policy Steve Alexander APR Executive Director Rick Moore NAPCOR Executive Director Agenda & Acknowledgments • Deep dive into 2015 PET recycling rate and supporting data • Jointly released by NAPCOR and the APR • Thanks to the following data providers, funders, and contractors: – PET Reclaimers and Converters – Providers of additional market data and perspectives – Consulting support from Moore Recycling Associates and HDR Who is APR? International trade association The Voice of Plastics Recycling® Companies committed to the success of plastics recycling Technical Authority on Plastics Recycling Technical Programs APR Design®Guide for Plastics Recyclability Test Methods/Guidance Protocols Brand Owner Training APR Committees Communication/Education/Advocacy APR Primary Goals Increase Enhance Communicate Supply Quality Value Increase the Value Proposition of Recycled Plastics Introduction to NAPCOR • NAPCOR is the trade Container PET association for the PET Producers Reclaimers packaging industry in the United States, Canada and PET Suppliers to Resin the PET Mexico Producers Industry • 52 members encompass all facets of the PET value chain Sheet & Thermoform Producers NAPCOR Membership 2016 PET Industry Suppliers PET Container Manufacturers American Starlinger-Sahm, Inc. Nissei ASB Company Amcor Rigid Plastics AMUT North America, Inc. Penn Color Plastipak Packaging, Inc. BP Plastic Technologies, Inc. Yoshino America Corporation ColorMatrix Polymetrix Erema North America REPI Husky Injection Molding Systems Sidel Inc. PET Sheet / Thermoformers Krones Inc. Sorema Plastic Recycling Sys. Muehlstein Sukano Polymers Corporation Dart Container Corporation National Recovery Technologies TABB Packaging Solutions, LLC Direct Pack, Inc.
    [Show full text]
  • PET Bottle Recycling for Sustainable Textiles PET Bottle Recycling for Sustainable Textiles
    DOI: 10.5772/intechopen.72589 Chapter 2 Provisional chapter PET Bottle Recycling for Sustainable Textiles PET Bottle Recycling for Sustainable Textiles Esin Sarioğlu and Hatice Kübra Kaynak Esin Sarioğlu and Hatice Kübra Kaynak Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.72589 Abstract Polyethylene terephthalate (PET), as the most favorable packaging material, is owing to its transparent color, lightweight, strength, food safe, inexpensive price, fully recyclabil- ity, etc. In addition to all these advantages, PET as a waste material takes up consider- able space in nature and needs to be recycled for the disposal of these wastes. In this regard, recycling enables conserving raw materials, reducing energy use in order to produce virgin PET, and reducing greenhouse gas emissions. Today, PET is the most widely recycled plastic in the world. Eco-friendly products obtained by recycling of PET are mainly used as textile fibers. In addition, both brands and consumers are seen to be enthusiastic in order to minimize the environmental effects of PET wastes. This study is concerned with the use of textile fiber from recycled PET (r-PET) bottles to produce a cotton blended ring and compact yarns. Undoubtedly, the study also includes compar- ison of cotton blended virgin polyester fiber (v-PET) with r-PET fiber to determine the advantages and disadvantages of r-PET fiber. The reason for choosing cotton fiber is the most preferred fiber blending with PET commercially. Keywords: r-PET, recycle, PET bottle, ring spinning system, compact spinning system, virgin PET 1.
    [Show full text]
  • China's Import of Waste PET Bottles Benefited Global Plastic Circularity
    pubs.acs.org/journal/ascecg Research Article China’s Import of Waste PET Bottles Benefited Global Plastic Circularity and Environmental Performance Zijie Ma, Morten W. Ryberg, Peng Wang, Linbin Tang, and Wei-Qiang Chen* Cite This: ACS Sustainable Chem. Eng. 2020, 8, 16861−16868 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Polyethylene terephthalate (PET) used to account for ≈50% of China’s waste plastics import. In 2018, the Chinese government banned the import of waste plastics due to the environmental and health burdens caused by the waste treatment processes. However, the recycling of waste PET also helps avoid the production of virgin PET and several corresponding environ- mental impacts such as fossil resources use and carbon emission, which remain unquantified. We combine material flow analysis and life cycle assessment to map the PET bottle cycles and evaluate the relevant environmental performances during 2000−2018 in China. The cumulative recycling of PET bottles amounted to 78 million tons (Mt) in China during the studied period. Among them, 29 Mt waste PET bottles (37% of total recycling) were imported from abroad and accounted for 40% of the world’s total export. Most waste PET bottles in China was recycled to produce PET fibers, which significantly improved global PET circularity, reduced the use of virgin PET material, and saved about 109 Mt oil-eq of fossil resources (e.g., coal and oil) use and avoided 233 Mt CO2-eq emissions. Despite these benefits, the environmental burdens with regional impacts during waste plastics treatment should be significantly reduced, and technologies for close-loop, namely bottle-to-bottle, recycling of PET should be further developed and widely applied.
    [Show full text]
  • BATTERY DISPOSAL Batteries Consist of Different Chemical Combinations Used to Produce Charges
    BATTERY DISPOSAL Batteries consist of different chemical combinations used to produce charges. Many of the materials used to manufacture batteries, cadmium, lead, lithium, nickel, magnesium and zinc, are hazardous. Hazardous Batteries Include: ! Lithium Ion batteries have potential to explode, do not dispose of in your trash/recycling bin. Lithium-Ion (Li-Ion), Lithium Polymer (Li Poly), Nickle Metal Hydride (Ni-MH), Nickle Cadmium (Ni-CAD), Nickle Zinc (NiZn), Lead Acid, Silver Oxide Button, When Recycling or Disposing Mercuric Oxide Button. of Batteries: Rechargeable batteries: • Cover the electrical contacts or battery ends with a non-conductive Include batteries in your phone, camera and power tape (electrical or vinyl tape), or tools. Rechargeable batteries can come as AA, AAA, lithium, NiMH and NiCD. Rechargeable batteries are • Seal individual batteries in separate less wasteful than single-use alkaline batteries, they plastic bags (like Ziploc® bags or can be recharged up to 1,000 times, last 2-5 years similar) so that they cannot conduct and are easy to recycle. However, they do contain electricity. toxic heavy metals and should be disposed of properly. This helps eliminate potential fire or explosion Button Cell Batteries: hazard when the batteries are collected together Are found in hearing aids and wrist watches. Because in a bulk container. of their size, these types of batteries can be easy to swallow. (Silver Oxide, Lithium, Alkaline): “L” Button Cell Batteries have numbers on the top Where to Recycle Batteries: of them. Batteries with numbers that start with • Northampton County Household Hazardous an “L” can be safely thrown away or recycled Waste Collection event as alkaline of lithium batteries.
    [Show full text]
  • Postconsumer PET Thermoform Containers, Recyclable Vs. Recycled
    A Dordan Manufacturing White Paper 2025 S. Castle Rd. Woodstock, IL, 60098 815.334.0087 WWW.DORDAN.COM Postconsumer PET Thermoform Containers, Recyclable vs. Recycled By Chandler Slavin Sustainability Coordinator Dordan Manufacturing Co. Inc. ©2015 Five years ago I was working Dordan’s booth at the Walmart Sustainable Packaging Expo in Bentonville, Arkansas, when a packaging engineer from Burts Bees walked by. “Thermoformed packaging!?” I exclaimed enthusiastically, only to be met with an ambivalent expression and the following remark; “We are getting out of thermoformed trays because thermoformed packaging isn’t recyclable.” Crickets. Fast-forward and NAPCOR1 reports that in 2013, PET thermoforms collected for recycling in the U.S. and Canada increased 25% over 2012, from 47.8 million pounds to 60 million.2 In five years, PET thermoformed containers went from being largely landfilled to collected for recycling in the majority of American communities.3 This tremendous development in post consumer thermoform recycling served as the foundation for my 2013 “Recycling Report,” published in Plastics in Packaging Magazine.4 Therein I describe the industry-initiated timeline of events that facilitated the inclusion of thermoformed packaging in the recycling infrastructure. My conclusion states, With the majority of American communities now accepting all non-bottle rigid containers for recycling and the technical barriers to PC PET thermoform recycling being resolved, the floodgates to PET thermoform are nearly ready to be opened.5 So, have the floodgates opened? Are communities finding a market for post consumer PET thermoformed packaging? It is one thing to accept material for recycling; it is quite another, however, to actually recycle it.
    [Show full text]
  • Use Recycling Outcomes in Alberta
    Managing end- use recycling outcomes in Alberta Beverage Container Management Board (BCMB) KPMG, December 2017 1 Table of contents 1. Introduction 3 2. Performance measurement: defining system-wide KPIs 4 3. Current-state assessment: understanding Alberta’s end-use 19 recycling performance 4. Performance management: defining a framework to manage 30 future end-use recycling performance 5. Conclusions 41 2 1. Introduction Alberta has a long history of collecting and recycling beverage containers. In 1993, the Government of Alberta consolidated a number of pieces of legislation into the Environmental Protection and Enhancement Act, which led to the evolution of the regulation underpinning the beverage container program, as it is current in force today. Part of the program’s mandate is to manage collection optimization and reduce the system wide environmental footprint. To this point, the Alberta Beverage Container Recycling Corporation (ABCRC) and the Beverage Container Management Board (BCMB) have a sound understanding of collection performance. With an overall collection rate of 86.2% in 20161, Alberta is amongst the better performers in the country. This report aims to look beyond the process of beverage container collection, by considering end-use recycling outcomes. What happens to the beverage containers once they have been collected by the collection system agent? Generally speaking, the following outcomes apply, presented in order of preference2: Reduce the environmental impact of producing the product by eliminating toxic components
    [Show full text]
  • PET Bottle Recycling in Japan
    CaseCase StudyStudy forfor MultiMulti--StakeholdersStakeholders PartnershipsPartnershipsCPBR,J ~From~From WastesWastes toto ValuableValuable Resources~Resources~ (PET(PET BottleBottle RecyclingRecycling inin Japan)Japan) Mar. 19, 2013 The Council for PET Bottle Recycling (CPBR, Japan) 1 PlasticPlastic PackagesPackages hadhad beenbeen disposeddisposed as Wastes in Japan until the mid-1990s as Wastes in Japan until the mid-1990s CPBR,J -Plastic Packages in Japan had been reclaimed as non-burnable Wastes until the mid-1990s. <Japan PET Bottle Association> -Established in 1982 -R&D for Recycling and Classification -From Waste to Valuable Resource -Reduction of Wastes -Extend a Life of Disposal Ground 2 Recycling Activity Before Packaging Recycling Law (~1995) CPBR,J <Development for Recycling> -Sorted Discharge & Sorted Collection Test : Collaboration with Consumer and Municipality -Research & Development for Recycling => 8 Recycling Plants were constructed by 1995 <Development for Application> -Fiber -Sheet -Others <Guideline> -Voluntary Design Guideline for Designated PET Bottles (1992~) Voluntary Publication for maintaining a better Recyclability 3 Voluntary Design Guideline (Latest) CPBR,J Voluntary Design Guideline for Designated PET Bottles = Obligation of PET Bottle Manufacturers & Bottlers CPBR requests Plastic Closures must be made of Importers to import PE or PP. Beverages etc. filled Do not use Aluminum Closures. in conformable bottles. Bottles must be made of only Clear PET (no color). When use multi-layer / coating for barrier,
    [Show full text]
  • Guidelines to Use When Educating Residents
    Recycling Outreach Guide for Minnesota Guidelines to use when educating residents Last updated September 2020 1 August 2020 Update Notice Regarding the Coronavirus COVID-19 Pandemic: The Outreach Guide below has been updated during the summer of 2020, following several changes to the recycling industry in Minnesota. Although it was updated during the Coronavirus COVID-19 pandemic, the information contained in this version of the Guide assumes normal functions of the industry and organizations listed. Please note that public health and safety of the essential workforce in the recycling and solid waste industry is of utmost importance to the REC and its partners. Due to changing requirements and precautions, variations in services may exist during this unprecedented time. We recommend that you contact any facility listed in the Guide below prior to visiting, to confirm their current policies and safety measures. Please practice caution and patience as we navigate the pandemic together. 2 Table of Contents Acknowledgements ................................................................................................................. 4 Background and Guiding Document ...................................................................................... 6 Always/Never List for Household Recycling .......................................................................... 6 Recycling Terminology ............................................................................................................ 7 Reuse First ..............................................................................................................................
    [Show full text]
  • Tbt Programme - Reg/Fed/022-667
    TBT PROGRAMME - REG/FED/022-667 TRADE REGULATORY IMPACT ASSESSMENT - MAURITIUS INVESTIGATION OF OPTIONS TO REDUCE THE IMPACTS OF POLYETHYLENE TEREPHTHALATE (PET) BOTTLES IN MAURITIUS Submitted by Economisti Associati srl (Lead Firm) BKP Development (Partner) 04 October 2015 TABLE OF CONTENTS 1. PROBLEM DEFINITION.................................................................................................................................. 5 1.1 INTRODUCTION .................................................................................................................................................. 5 1.2 POLYETHYLENE TEREPHTHALATE (PET) ....................................................................................................... 5 1.3 RECYCLING PET ................................................................................................................................................. 7 1.4 DEFINITION OF PET BOTTLE ............................................................................................................................ 9 1.5 PET BOTTLES IN MAURITIUS: FACTS AND FIGURES ..................................................................................... 10 1.6 PRIOR ACTIONS ............................................................................................................................................... 11 1.7 LITERATURE REVIEW ...................................................................................................................................... 11 1.8 ECONOMIC IMPACTS
    [Show full text]
  • Circularity Study on PET Bottle-To-Bottle Recycling
    sustainability Article Circularity Study on PET Bottle-To-Bottle Recycling Elisabeth Pinter 1 , Frank Welle 2 , Elisa Mayrhofer 3 , Andreas Pechhacker 4, Lukas Motloch 4, Vera Lahme 5, Andy Grant 5 and Manfred Tacker 1,* 1 Department of Applied Life Sciences, FH Campus Wien, University of Applied Sciences, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria; [email protected] 2 Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Straße 35, 85354 Freising, Germany; [email protected] 3 Department for Microbiology and Cell Culture, OFI–Austrian Research Institute for Chemistry and Technology, Franz-Grill-Straße 5, Object 213, 1030 Vienna, Austria; elisa.mayrhofer@ofi.at 4 Starlinger & Co GmbH, Sonnenuhrgasse 4, 1060 Vienna, Austria; [email protected] (A.P.); [email protected] (L.M.) 5 Eunomia, 37 Queen Square, Bristol BS1 4QS, UK; [email protected] (V.L.); [email protected] (A.G.) * Correspondence: [email protected] Abstract: With the European Green Deal, the importance of recycled products and materials has increased. Specifically, for PET bottles, a high content of recycled material (rPET) is demanded by the industry and consumers. This study was carried out in a lab environment replicating real- life industrial processes, to investigate the possible impacts on rPET quality over eleven recycling loops, aiming to use high amounts of rPET repetitively. A cycle included extrusion, solid state polycondensation (SSP), a second extrusion to simulate bottle production, hot wash and a drying step. 75% rPET and 25% virgin PET were extruded in eleven cycles to simulate a recycling and production Citation: Pinter, E.; Welle, F.; process.
    [Show full text]