Fate of Mitochondrial DNA in Human-Mouse Somatic Cell Hybrids (Density Gradient Centrifugation/Ethidium Bromide/Karyotype)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pedigrees and Karyotypes Pedigree
Pedigrees and Karyotypes Pedigree A pedigree shows the relationships within a family and it helps to chart how one gene can be passed on from generation to generation. Pedigrees are tools used by genetic researchers or counselors to identify a genetic condition running through a family, they aid in making a diagnosis, and aid in determining who in the family is at risk for genetic conditions. On a pedigree: A circle represents a female A square represents a male A horizontal line connecting a male and female represents a marriage A vertical line and a bracket connect the parents to their children A circle/square that is shaded means the person HAS the trait. A circle/square that is not shaded means the person does not have the trait. Children are placed from oldest to youngest. A key is given to explain what the trait is. Marriage Male-DAD Female-MOM Has the trait Male-Son Female-daughter Female-daughter Male- Son Oldest to youngest Steps: ff Ff •Identify all people who have the trait. •For the purpose of this class all traits will be given to you. In other instances, you would have to determine whether or not the trait is autosomal dominant, autosomal recessive, or sex- linked. •In this example, all those who have the trait are homozygous recessive. •Can you correctly identify all genotypes of this family? ff ff Ff Ff •F- Normal •f- cystic fibrosis Key: affected male affected female unaffected male unaffected female Pp Pp PKU P- Unaffected p- phenylketonuria PP or Pp pp Pp pp pp Pp Pp Key: affected male affected female unaffected male unaffected female H-huntington’s hh Hh disease h-Unaffected Hh hh Hh hh Hh hh hh Key: affected male affected female unaffected male unaffected female Sex-Linked Inheritance Colorblindness Cy cc cy Cc Cc cy cy Key: affected male affected female unaffected male unaffected female Karyotypes To analyze chromosomes, cell biologists photograph cells in mitosis, when the chromosomes are fully condensed and easy to see (usually in metaphase). -
Cytogenetics, Chromosomal Genetics
Cytogenetics Chromosomal Genetics Sophie Dahoun Service de Génétique Médicale, HUG Geneva, Switzerland [email protected] Training Course in Sexual and Reproductive Health Research Geneva 2010 Cytogenetics is the branch of genetics that correlates the structure, number, and behaviour of chromosomes with heredity and diseases Conventional cytogenetics Molecular cytogenetics Molecular Biology I. Karyotype Definition Chromosomal Banding Resolution limits Nomenclature The metaphasic chromosome telomeres p arm q arm G-banded Human Karyotype Tjio & Levan 1956 Karyotype: The characterization of the chromosomal complement of an individual's cell, including number, form, and size of the chromosomes. A photomicrograph of chromosomes arranged according to a standard classification. A chromosome banding pattern is comprised of alternating light and dark stripes, or bands, that appear along its length after being stained with a dye. A unique banding pattern is used to identify each chromosome Chromosome banding techniques and staining Giemsa has become the most commonly used stain in cytogenetic analysis. Most G-banding techniques require pretreating the chromosomes with a proteolytic enzyme such as trypsin. G- banding preferentially stains the regions of DNA that are rich in adenine and thymine. R-banding involves pretreating cells with a hot salt solution that denatures DNA that is rich in adenine and thymine. The chromosomes are then stained with Giemsa. C-banding stains areas of heterochromatin, which are tightly packed and contain -
Been Possible to Relate the Human Characteristics of the Hybrid Phenotype to the Number of Human Chromosomes Retained
HUMAN-MOUSE HYBRID CELL LINES CONTAINING PARTIAL COMPLEMENTS OF HUMAN CHROMOSOMES AND FUNCTIONING HUMA N GENES* BY MARY C. WEISSt AND HOWARD GREEN DEPARTMENT OF PATHOLOGY, NEW YORK UNIVERSITY SCHOOL OF MEDICINE Communicated by Boris Ephrussi, June 26, 1967 This paper will describe the isolation and properties of a group of new somatic hybrid cell lines obtained by crossing human diploid fibroblasts with an established mouse fibroblast line. These hybrids represent a combination between species more remote than those previously described (see, however, discussion of virus- induced heterokaryons). They are also the first reported hybrid cell lines con- taining human components and possess properties which may be useful for certain types of genetic investigations. Interspecific hybridizations involving rat-mouse,' hamster-mouse,2 3 and Ar- menian hamster-Syrian hamster4 combinations have been shown to yield popula- tions of hybrid cells capable of indefinite serial propagation. Investigations of the karyotype and phenotype of such hybrids have shown that both parental genomes are present2 5 and functional.6 In every case, some loss of chromosomes has been observed; this occurred primarily during the first few months of propagation, usually amounted to approximately 10-20 per cent of the complement present in newly formed hybrid cells, and involved chromosomes of both parents. Recent studies have provided evidence of preferential loss of chromosomes of one parental species in interspecific hybrids.2'5 A more extreme example of this preferential loss has been encountered in the human-mouse hybrid lines to be described, in which at least 75 per cent, and in some cases more than 95 per cent, of the human complement has been lost. -
A Giant of Genetics Cornell University As a Graduate Student to Work on the Cytogenetics of George Beadle, an Uncommon Maize
BOOK REVIEW farm after obtaining his baccalaureate at Nebraska Ag, he went to A giant of genetics Cornell University as a graduate student to work on the cytogenetics of George Beadle, An Uncommon maize. On receiving his Ph.D. from Cornell in 1931, Beadle was awarded a National Research Council fellowship to do postdoctoral work in T. H. Farmer: The Emergence of Genetics th Morgan’s Division of Biology at Caltech, where the fruit fly, Drosophila, in the 20 Century was then being developed as the premier experimental object of van- By Paul Berg & Maxine Singer guard genetics. On encountering Boris Ephrussi—a visiting geneticist from Paris— Cold Spring Harbor Laboratory Press, at Caltech, Beadle began his work on the mechanism of gene action. 2003 383 pp. hardcover, $35, He and Ephrussi studied certain mutants of Drosophila whose eye ISBN 0-87969-688-5 color differed in various ways from the red hue characteristic of the wild-type fly. They inferred from these results that the embryonic Reviewed by Gunther S Stent development of animals consists of a series of chemical reactions, each step of which is catalyzed by a specific enzyme, whose formation is, in http://www.nature.com/naturegenetics turn, controlled by a specific gene. This inference provided the germ for Beadle’s one-gene-one-enzyme doctrine. To Beadle and Ephrussi’s “Isaac Newton’s famous phrase reminds us that major advances in disappointment, however, a group of German biochemists beat them science are made ‘on the shoulders of giants’. Too often, however, the to the identification of the actual chemical intermediates in the ‘giants’ in our field are unknown to many colleagues and biosynthesis of the Drosophila eye color pigments. -
Mitosis Meiosis Karyotype
POGIL Cell Biology Activity 7 – Meiosis/Gametogenesis Schivell MODEL 1: karyotype Meiosis Mitosis 1 POGIL Cell Biology Activity 7 – Meiosis/Gametogenesis Schivell MODEL 2, Part 1: Spermatogenesis The trapezoid below represents a small portion of the wall of a "seminiferous tubule" within the testis. The cells in each of the panels are all originally derived from the single cell in panel 1. 1 2 3 Outside of tubule Lumen of tubule 4 5 6 7 8 9 2 POGIL Cell Biology Activity 7 – Meiosis/Gametogenesis Schivell MODEL 2, Part 2: vas epididymis deferens testis (plural: testes) seminiferous tubules (cut) Courtesy of: Dr. E. Kent Christensen, U. of Michigan lumen of seminiferous tubule sperm This portion shown expanded in part 1 of Model 2 3 POGIL Cell Biology Activity 7 – Meiosis/Gametogenesis Schivell MODEL 3: Oogenesis This is a time lapse of an ovary showing one "follicle" as it develops from immaturity to ovulation. The follicle starts in panel 1 as a small sphere of "follicle cells" surrounding the oocyte. In each panel, chromosomes within the oocyte are shown as an inset. (There are actually thousands of follicles in each mammalian ovary). 1 2 3 4 5 6 7 4 POGIL Cell Biology Activity 7 – Meiosis/Gametogenesis Schivell Model 1 questions: 1. Using the same type of cartoon as model 1, draw an "unreplicated", condensed chromosome. 2. Draw a replicated, condensed chromosome: 3. Circle a homologous pair in the karyotype. Remember that one of these chromosomes came from the male parent and the other from the female parent. These two chromosomes carry the same genes! (But can have different alleles on each homolog.) 4. -
Comprehensive Chromosomal and Mitochondrial Copy Number Profiling in Human IVF Embryos
ARTICLE IN PRESS 1bs_bs_query Q2 Article 2bs_bs_query 3bs_bs_query Comprehensive chromosomal and mitochondrial copy 4bs_bs_query 5bs_bs_query number profiling in human IVF embryos 6bs_bs_query Q1 a,1, a,1 a a 7bs_bs_query Wei Shang *, Yunshan Zhang , Mingming Shu , Weizhou Wang , a a b b, b b 8bs_bs_query Likun Ren , Fu Chen , Lin Shao , Sijia Lu *, Shiping Bo , Shujie Ma , b 9bs_bs_query Yumei Gao a 10bs_bs_query Assisted Reproductive Centre of the Department of Gynaecology and Obstetrics, PLA Naval General Hospital, 11 bs_bs_query Haidian District, Beijing 100048, China b 12bs_bs_query Yikon Genomics, Fengxian District, Shanghai 201400, China 13bs_bs_query 14bs_bs_query 15bs_bs_query Wei Shang has been the Associate Chief Physician at the Department of Gynaecology and Obstetrics, PLA Naval 16bs_bs_query General Hospital, Beijing, since 2005. Her research interests focus on assisted reproduction technology, repro- 17bs_bs_query ductive endocrinology and ovary dysfunction. 18bs_bs_query 19bs_bs_query KEY MESSAGE 20bs_bs_query Using a validated approach called MALBAC-NGS, a comprehensive chromosomal and mitochondrial copy number 21bs_bs_query profiling in human embryos was conducted, and correlations of mitochondria quantity with maternal age and 22bs_bs_query embryo stage were observed. The strategy might be used to perform an advanced PGS targeting both chro- 23bs_bs_query mosomal and mitochondria copy numbers. 24bs_bs_query 25bs_bs_query ABSTRACT 26bs_bs_query 27bs_bs_query Single cell whole genome sequencing helps to decipher the genome -
905 Crossovers Between Epigenesis and Epigenetics
MEDICINA NEI SECOLI ARTE E SCIENZA, 26/3 (2014) 905-942 Journal of History of Medicine Articoli/Articles CROSSOVERS BETWEEN EPIGENESIS AND EPIGENETICS. A MULTICENTER APPROACH TO THE HISTORY OF EPIGENETICS (1901-1975) ROSSELLA COSTA AND GIULIA FREZZA Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza, Università di Roma, I SUMMARY The origin of epigenetics has been traditionally traced back to Conrad Hal Waddington’s foundational work in 1940s. The aim of the present paper is to reveal a hidden history of epigenetics, by means of a multicenter approach. Our analysis shows that genetics and embryology in early XX century – far from being non-communicating vessels – shared similar questions, as epitomized by Thomas Hunt Morgan’s works. Such questions were rooted in the theory of epigenesis and set the scene for the development of epigenetics. Since the 1950s, the contribution of key scientists (Mary Lyon and Eduardo Scarano), as well as the discussions at the international conference of Gif-sur-Yvette (1957) paved the way for three fundamental shifts of focus: 1. From the whole embryo to the gene; 2. From the gene to the complex extranuclear processes of development; 3. From cytoplasmic inheritance to the epigenetics mechanisms. Introduction Mainstream literature considers the British scientist Conrad Hal Waddington’s pioneering insights, at the crossroad of embryological and genetic studies, the first attempt to create a coherent frame of epigenetics in the mid of XX century1. Recently, a second parallel origin, referred to the American ciliatologist David Nanney, mainly Key words: Epigenesis - Epigenetics - T.H. Morgan - E. Scarano - Methylation. 905 Rossella Costa and Giulia Frezza focusing on cell differentiation, has been put in evidence2. -
Be Convenient, It Can Be Only Tentative for It Is Not Demonstrated That These Correspond with Different Genetical Types
REVIEWS TREASURYOF HUMAN INHERITANCE. Vol. V. Part II. On syndactyly and its association with polydactyly. By Julia Bell. Cambridge University Press. 1953. lOs. 6d. Thisis the latest addition to the valuable collection of human pedigrees featuring pathological and abnormal conditions which during some forty years have been brought together in the Treasury of Human Inheritance under the sponsorship of the Galton Laboratory. From an exhaustive study of the genetical and medical literature, Dr Bell has assembled 63 pedigrees which include some 700 predominantly syndactylous digital anomalies. The varied manifestation of syndactyly, the association with polydactyly, differences in its sex incidence and the difficult problem of its inheritance, these are questions considered in a preliminary note. The genetical analysis of this material would certainly be of great interest. Dr Bell has classified the pedigrees on the basis of the varied manifestation and whilst this may be convenient, it can be only tentative for it is not demonstrated that these correspond with different genetical types. However, it does focus attention on interesting sex differences in the incidence of the various forms of this defect. Noteworthy amongst the collection is Schofield's unique pedigree (fig. 125) in which webbed toes are limited to males, being transmitted only from father to son, completely in accordance with the inheritance of a single gene on the Y-chromosome. One normal sister has been lost from this pedigree in transcription. J. H. BENNETT. NUCLEO-CYTOPLASMICRELATIONS IN MICRO-ORGANISMS. Their bearing on cell heredity and differentiation. By Boris Ephrussi. Oxford : Geoffrey Cumberlege, Clarendon Press. 1953. Pp. 127. 18s. -
"Neutral 'Petites'" and "Suppressive 'Petites'" (The One Previously Studied6 Belonging to the Former Class).6
SUPPRESSIVENESS: A NEW FACTOR IN THE GENETIC DETERMINISM OF THE SYNTHESIS OF RESPIRATORY ENZYMES IN YEAST BY BORIS EPHRUSSI, HtLE'NE DE MARGERIE-HOTTINGUER, AND HERSCHEL ROMAN* LABORATOIRE DE GANATIQUE PHYSIOLOGIQUE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS, FRANCE Communicated by G. W. Beadle, September 27, 1955 In a series of papers from this laboratory' published since 1949, it was shown that clones of baker's yeast (Saccharomyces cerevisiae), whether diploid or haploid, con- stantly give rise during their growth to mutants ("vegetative 'petites' ") which are stable in vegetative reproduction and are characterized by a reduced colony size on media in which sugar is the limiting factor. The reduced colony size was shown to be due to a respiratory deficiency of the mutant cells,2 due in turn to the lack of several enzymes (including cytochrome oxidase) bound, in normal yeast, to par- ticles sedimentable by centrifugation.' It was suggested that, from the genetical point of view, the mutation resulting in the production of vegetative mutants con- sists in the loss or irreversible functional inactivation of a particulate cytoplasmic autoreproducing factor, required for the synthesis of respiratory enzymes.4 This interpretation was based on the results of crosses which will be recalled below. It will suffice to say at this point that a single strain of vegetative mutants was utilized in the earlier detailed genetic study;5 thus, until more recently, no systematic at- tempts had been made to compare the genetic behavior of a number of such mutants of independent origin. It is such a study, undertaken three years ago, that has now revealed that there exist at least two types of vegetative respiratory mutants which are, so far as we know, identical biochemically but which can be distinguished by their behavior in crosses with normal yeast. -
Chromosomal Disorders
Understanding Genetic Tests and How They Are Used David Flannery,MD Medical Director American College of Medical Genetics and Genomics Starting Points • Genes are made of DNA and are carried on chromosomes • Genetic disorders are the result of alteration of genetic material • These changes may or may not be inherited Objectives • To explain what variety of genetic tests are now available • What these tests entail • What the different tests can detect • How to decide which test(s) is appropriate for a given clinical situation Types of Genetic Tests . Cytogenetic . (Chromosomes) . DNA . Metabolic . (Biochemical) Chromosome Test (Karyotype) How a Chromosome test is Performed Medicaldictionary.com Use of Karyotype http://medgen.genetics.utah.e du/photographs/diseases/high /peri001.jpg Karyotype Detects Various Chromosome Abnormalities • Aneuploidy- to many or to few chromosomes – Trisomy, Monosomy, etc. • Deletions – missing part of a chromosome – Partial monosomy • Duplications – extra parts of chromosomes – Partial trisomy • Translocations – Balanced or unbalanced Karyotyping has its Limits • Many deletions or duplications that are clinically significant are not visible on high-resolution karyotyping • These are called “microdeletions” or “microduplications” Microdeletions or microduplications are detected by FISH test • Fluorescence In situ Hybridization FISH fluorescent in situ hybridization: (FISH) A technique used to identify the presence of specific chromosomes or chromosomal regions through hybridization (attachment) of fluorescently-labeled DNA probes to denatured chromosomal DNA. Step 1. Preparation of probe. A probe is a fluorescently-labeled segment of DNA comlementary to a chromosomal region of interest. Step 2. Hybridization. Denatured chromosomes fixed on a microscope slide are exposed to the fluorescently-labeled probe. Hybridization (attachment) occurs between the probe and complementary (i.e., matching) chromosomal DNA. -
The Singular Fate of Genetics in the History of French Biology, 1900-1940 Richard Burian, Jean Gayon, Doris Zallen
The singular fate of Genetics in the History of French Biology, 1900-1940 Richard Burian, Jean Gayon, Doris Zallen To cite this version: Richard Burian, Jean Gayon, Doris Zallen. The singular fate of Genetics in the History of French Biology, 1900-1940. Journal of the History of Biology, Springer Verlag, 1988, 21 (3), pp.357-402. 10.1007/BF00144087. halshs-00775435 HAL Id: halshs-00775435 https://halshs.archives-ouvertes.fr/halshs-00775435 Submitted on 16 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Singular Fate of Genetics in the History of French Biology, 1900-l 940 RICHARD M. BURIAN” Department of Philosophy Virginia Polytechnic Institute and State University Blacksburg, Virginia 24601 JEAN GAYON Faculti de lettres etphilosophie Universite’ de Bourgogne DQon, France DORIS ZALLEN Center for Programs in the Humanities Virginia Polytechnic Institute and State Universily Blacksburg, Virginia 24601 INTRODUCTION It has often been remarked how long it took genetics to penetrate French science. This observation is just. It was not until the late 1940s for example, that genetics appeared in an official university curriculum. At the same time, it is also well known that, as early as the 1940s, French scientists played an important role at the forefront of genetic research, specifically in work that helped bring about the transition to molecular genetics. -
Slavyana Staykova-Dis.Pdf
МЕДИЦИНСКИ УНИВЕРСИТЕТ – СОФИЯ МЕДИЦИНСКИ ФАКУЛТЕТ КАТЕДРА ПО МЕДИЦИНСКА ГЕНЕТИКА СЛАВЯНА ЯНУШЕВА ЯНЕВА СТАЙКОВА ГЕНОМНИ НАРУШЕНИЯ В ПРЕДИМПЛАНТАЦИОННИ ЧОВЕШКИ ЕМБРИОНИ ДИСЕРТАЦИЯ за присъждане на образователна и научна степен “ДОКТОР” Област на висше образование: „Природни науки, математика и информатика” Шифър 4.3. Професионално направление: „Биологически науки” Научна специалност: „Генетика” НАУЧЕН РЪКОВОДИТЕЛ: ПРОФ. Д-Р САВИНА ХАДЖИДЕКОВА, ДМ София, 2020 1 „Технологии, които са налице при раждането ни, приемаме за обикновени; технологии, изобретени преди да навършим 35, смятаме за революционни и вълнуващи; технологии, създадени след 35-та ни годишнина, заклеймяваме като неестествени и неправилни.“ Дъглас Адамс 2 Благодаря: Благодаря на научния ми ръководител проф. Хаджидекова за помощта, насоките и възможността да реализирам този дисертационен труд. Благодаря на проф. Тончева за насърчаването, подкрепата и вярата, че мога да се справя с реализацията на дисертационния труд. Благодаря на д-р Станева за полезните съвети и напътствия и на Блага за получените нови знания. Благодаря на д-р Стаменов за възможността да работя с богат клиничен материал и съвременни технологии. Сърдечно благодаря на семейството ми – сина ми Симеон, съпруга ми Владимир, мама и тати, леля, баба и дядовците ми, както и на най-близките ми приятели – Ивайло, Надежда и Марта, за безрезервната им подкрепа, насърчаване и вяра в мен, без които нямаше да се справя. 3 СЪДЪРЖАНИЕ Използвани в текста съкращения 9 Списък на фигурите в текста 11 Списък на таблиците в текста 14 ВЪВЕДЕНИЕ 16 ЛИТЕРАТУРЕН ОБЗОР 18 I. Мястото на PGT в инвитро технологиите 18 II. Исторически план на методите за PGT 20 III. Етапи на PGT анализа 21 IV. Същност на инвитро технологиите 22 1.