A New Subgroup Lattice Characterization of Finite Solvable Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ON the SHELLABILITY of the ORDER COMPLEX of the SUBGROUP LATTICE of a FINITE GROUP 1. Introduction We Will Show That the Order C
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 353, Number 7, Pages 2689{2703 S 0002-9947(01)02730-1 Article electronically published on March 12, 2001 ON THE SHELLABILITY OF THE ORDER COMPLEX OF THE SUBGROUP LATTICE OF A FINITE GROUP JOHN SHARESHIAN Abstract. We show that the order complex of the subgroup lattice of a finite group G is nonpure shellable if and only if G is solvable. A by-product of the proof that nonsolvable groups do not have shellable subgroup lattices is the determination of the homotopy types of the order complexes of the subgroup lattices of many minimal simple groups. 1. Introduction We will show that the order complex of the subgroup lattice of a finite group G is (nonpure) shellable if and only if G is solvable. The proof of nonshellability in the nonsolvable case involves the determination of the homotopy type of the order complexes of the subgroup lattices of many minimal simple groups. We begin with some history and basic definitions. It is assumed that the reader is familiar with some of the rudiments of algebraic topology and finite group theory. No distinction will be made between an abstract simplicial complex ∆ and an arbitrary geometric realization of ∆. Maximal faces of a simplicial complex ∆ will be called facets of ∆. Definition 1.1. A simplicial complex ∆ is shellable if the facets of ∆ can be ordered σ1;::: ,σn so that for all 1 ≤ i<k≤ n thereexistssome1≤ j<kand x 2 σk such that σi \ σk ⊆ σj \ σk = σk nfxg. The list σ1;::: ,σn is called a shelling of ∆. -
Normal Subgroup Structure of Totally Disconnected Locally Compact Groups
Normal subgroup structure of totally disconnected locally compact groups Colin D. Reid Abstract The present article is a summary of joint work of the author and Phillip Wesolek on the normal subgroup structure of totally disconnected locally compact second-countable (t.d.l.c.s.c.) groups. The general strategy is as follows: We obtain normal series for a t.d.l.c.s.c. group in which each factor is ‘small’ or a non-abelian chief factor; we show that up to a certain equivalence relation (called association), a given non-abelian chief factor can be inserted into any finite normal series; and we obtain restrictions on the structure of chief factors, such that the restrictions are invariant under association. Some limitations of this strategy and ideas for future work are also discussed. 1 Introduction A common theme throughout group theory is the reduction of problems concern- ing a group G to those concerning the normal subgroup N and the quotient G=N, where both N and G=N have some better-understood structure; more generally, one can consider a decomposition of G via normal series. This approach has been espe- cially successful for the following classes of groups: finite groups, profinite groups, algebraic groups, connected Lie groups and connected locally compact groups. To summarise the situation for these classes, let us recall the notion of chief factors and chief series. Definition 1. Let G be a Hausdorff topological group. A chief factor K=L of G is a pair of closed normal subgroups L < K such that there are no closed normal subgroups of G lying strictly between K and L.A descending chief series for G is a Colin D. -
Groups with Identical Subgroup Lattices in All Powers
GROUPS WITH IDENTICAL SUBGROUP LATTICES IN ALL POWERS KEITH A. KEARNES AND AGNES´ SZENDREI Abstract. Suppose that G and H are groups with cyclic Sylow subgroups. We show that if there is an isomorphism λ2 : Sub (G × G) ! Sub (H × H), then there k k are isomorphisms λk : Sub (G ) ! Sub (H ) for all k. But this is not enough to force G to be isomorphic to H, for we also show that for any positive integer N there are pairwise nonisomorphic groups G1; : : : ; GN defined on the same finite set, k k all with cyclic Sylow subgroups, such that Sub (Gi ) = Sub (Gj ) for all i; j; k. 1. Introduction To what extent is a finite group determined by the subgroup lattices of its finite direct powers? Reinhold Baer proved results in 1939 implying that an abelian group G is determined up to isomorphism by Sub (G3) (cf. [1]). Michio Suzuki proved in 1951 that a finite simple group G is determined up to isomorphism by Sub (G2) (cf. [10]). Roland Schmidt proved in 1981 that if G is a finite, perfect, centerless group, then it is determined up to isomorphism by Sub (G2) (cf. [6]). Later, Schmidt proved in [7] that if G has an elementary abelian Hall normal subgroup that equals its own centralizer, then G is determined up to isomorphism by Sub (G3). It has long been open whether every finite group G is determined up to isomorphism by Sub (G3). (For more information on this problem, see the books [8, 11].) One may ask more generally to what extent a finite algebraic structure (or algebra) is determined by the subalgebra lattices of its finite direct powers. -
On Generalizations of Sylow Tower Groups
Pacific Journal of Mathematics ON GENERALIZATIONS OF SYLOW TOWER GROUPS ABI (ABIADBOLLAH)FATTAHI Vol. 45, No. 2 October 1973 PACIFIC JOURNAL OF MATHEMATICS Vol. 45, No. 2, 1973 ON GENERALIZATIONS OF SYLOW TOWER GROUPS ABIABDOLLAH FATTAHI In this paper two different generalizations of Sylow tower groups are studied. In Chapter I the notion of a fc-tower group is introduced and a bound on the nilpotence length (Fitting height) of an arbitrary finite solvable group is found. In the same chapter a different proof to a theorem of Baer is given; and the list of all minimal-not-Sylow tower groups is obtained. Further results are obtained on a different generalization of Sylow tower groups, called Generalized Sylow Tower Groups (GSTG) by J. Derr. It is shown that the class of all GSTG's of a fixed complexion form a saturated formation, and a structure theorem for all such groups is given. NOTATIONS The following notations will be used throughont this paper: N<]G N is a normal subgroup of G ΛΓCharG N is a characteristic subgroup of G ΛΓ OG N is a minimal normal subgroup of G M< G M is a proper subgroup of G M<- G M is a maximal subgroup of G Z{G) the center of G #>-part of the order of G, p a prime set of all prime divisors of \G\ Φ(G) the Frattini subgroup of G — the intersec- tion of all maximal subgroups of G [H]K semi-direct product of H by K F(G) the Fitting subgroup of G — the maximal normal nilpotent subgroup of G C(H) = CG(H) the centralizer of H in G N(H) = NG(H) the normalizer of H in G PeSy\p(G) P is a Sylow ^-subgroup of G P is a Sy-subgroup of G PeSγlp(G) Core(H) = GoreG(H) the largest normal subgroup of G contained in H= ΓioeoH* KG) the nilpotence length (Fitting height) of G h(G) p-length of G d(G) minimal number of generators of G c(P) nilpotence class of the p-group P some nonnegative power of prime p OP(G) largest normal p-subgroup of G 453 454 A. -
Let G Be a Group. a Subnormal Series of Subgroups of G Is a Sequence G {E} < G 1 < ... < Gn = G Such That G I−1
NORMAL AND SUBNORMAL SERIES Let G be a group. A subnormal series of subgroups of G is a sequence G0 = feg < G1 < ::: < Gn = G such that Gi−1 / Gi for i = 1; :::; n. A normal series is a subnormal series such that each Gi is normal in G. The number n is called the length of the (sub)normal series. A (sub)normal series is called proper if all the quotient groups Gi=Gi−1 are nontrivial. These quotient groups are refered to as successive quotients of the (sub)normal series. We say that two (sub)normal series are equivalent if they have the same length and there is a permutation π 2 Sn such that the groups Gi=Gi−1 and Gπ(i)=Gπ(i)−1 are isomorphic for all i = 1; 2; :::; n. A refinement of a (sub)normal series G0 = feg < G1 < ::: < Gn = G is a 0 0 0 (sub)normal series G0 = feg < G1 < ::: < Gm = G such that there is a strictly 0 increasing function f : f1; :::; ng −! f1; 2; :::; mg such that Gi = Gf(i) for all i. We prove now the following important theorem: Schreier Refinement Theorem. Any two (sub)normal series in G have equivalent refinements. It the series are proper, the refinements can be chosen proper as well. Proof: Note first that each integer k can be uniquely written in the form (m+1)i+j for some integer i and some j 2 f0; :::; mg. If 0 ≤ k < (m+1)(n+1) then 0 ≤ i ≤ n. Similarly, each integer 0 ≤ k < (m + 1)(n + 1) can be uniquely written in the form (n + 1)j + i, where 0 ≤ i ≤ n and 0 ≤ j ≤ m. -
The M\" Obius Number of the Socle of Any Group
Contents 1 Definitions and Statement of Main Result 2 2 Proof of Main Result 3 2.1 Complements ........................... 3 2.2 DirectProducts.......................... 5 2.3 The Homomorphic Images of a Product of Simple Groups . 6 2.4 The M¨obius Number of a Direct Power of an Abelian Simple Group ............................... 7 2.5 The M¨obius Number of a Direct Power of a Nonabelian Simple Group ............................... 8 2.6 ProofofTheorem1........................ 9 arXiv:1002.3503v1 [math.GR] 18 Feb 2010 1 The M¨obius Number of the Socle of any Group Kenneth M Monks Colorado State University February 18, 2010 1 Definitions and Statement of Main Result The incidence algebra of a poset P, written I (P ) , is the set of all real- valued functions on P × P that vanish for ordered pairs (x, y) with x 6≤ y. If P is finite, by appropriately labeling the rows and columns of a matrix with the elements of P , we can see the elements of I (P ) as upper-triangular matrices with zeroes in certain locations. One can prove I (P ) is a subalgebra of the matrix algebra (see for example [6]). Notice a function f ∈ I(P ) is invertible if and only if f (x, x) is nonzero for all x ∈ P , since then we have a corresponding matrix of full rank. A natural function to consider that satisfies this property is the incidence function ζP , the characteristic function of the relation ≤P . Clearly ζP is invertible by the above criterion, since x ≤ x for all x ∈ P . We define the M¨obius function µP to be the multiplicative inverse of ζP in I (P ) . -
(Ipad) Subgroups Generated by a Subset of G Cyclic Groups Suppo
Read: Dummit and Foote Chapter 2 Lattice of subgroups of a group (iPad) Subgroups generated by a subset of G Cyclic groups Suppose is a subgroup of G. We will say that is the smallest subgroup of G containing S if S and if H is a subgroup of G containing S then S. Lemma 1. If and 0 both satisfy this denition then = 0. (Proof below that S = S .) h i hh ii Theorem 2. Let G be a group and S a subset. Then there is a unique smallest subgroup of G containing S. First proof (not constructive). Let S = H: h i H a subgroup of G S\H This is the unique smallest subgroup of G containing S. Indeed, these are all subgroups so their intersection is a subgroup: if x; y S then x; y H for all H in the intersection, so 1 2 h i 2 1 xy H and x¡ H and 1 H for all these subgroups, so xy; x¡ ; 1 S proving S is a gro2up. 2 2 2 h i h i Moreover, S is the smallest subgroup of G containing S because if H is any subgroup of G containinhg Si then H is one of the groups in the intersection and so S H. h i Second proof: Let S be dened as the set of all products (words) hh ii a a a 1 2 N 1 where either ai S or ai¡ S and if N = 0 the empty product is interpreted as 1G. I claim this is the smal2lest subgro2up of G containing S. -
On the Structure of Overgroup Lattices in Exceptional Groups of Type G2(Q)
On the Structure of Overgroup Lattices in Exceptional Groups of Type G2(q) Jake Wellens Mentor: Michael Aschbacher December 4, 2017 Abstract: We study overgroup lattices in groups of type G2 over finite fields and reduce Shareshi- ans conjecture on D∆-lattices in the G2 case to a smaller question about the number of maximal elements that can be conjugate in such a lattice. Here we establish that, modulo this smaller ques- tion, no sufficiently large D∆-lattice is isomorphic to the lattice of overgroups OG(H) in G = G2(q) for any prime power q and any H ≤ G. This has application to the question of Palfy and Pud- lak as to whether each finite lattice is isomorphic to some overgroup lattice inside some finite group. 1 Introduction Recall that a lattice is a partially ordered set in which each element has a greatest lower bound and a least upper bound. In 1980, Palfy and Pudlak [PP] proved that the following two statements are equivalent: (1) Every finite lattice is isomorphic to an interval in the lattice of subgroups of some finite group. (2) Every finite lattice is isomorphic to the lattice of congruences of some finite algebra. This leads one to ask the following question: The Palfy-Pudlak Question: Is each finite lattice isomorphic to a lattice OG(H) of overgroups of some subgroup H in a finite group G? There is strong evidence to believe that the answer to Palfy-Pudlak Question is no. While it would suffice to exhibit a single counterexample, John Shareshian has conjectured that an entire class of lattices - which he calls D∆-lattices - are not isomorphic to overgroup lattices in any finite groups. -
Extreme Classes of Finite Soluble Groups
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 9, 285-313 (1968) Extreme Classes of Finite Soluble Groups ROGER CARTER The Mathematics Institute, University of Warwick, Coventry, England BERND FISCHER Mathematisches Seminar der Universitdt Frankfurt am Main, Germany TREVOR HAWKES Corpus Christi College, Cambridge, England Communicated by B. Huppert Received August 24, 1967 Knowledge of the structure of a specified collection 9 of subgroups of a group G can often yield detailed information about G itself. For example we have the elementary fact that if all the minimal cyclic subgroups of a group G are n-groups then G is a n-group. Another example is provided by an unpublished theorem of M. B. Powell who has shown that if we take for 9’ the collection of 2-generator subgroups of a finite soluble group G then G has p-length at most n if and only if every member of Y has p-length at most n. Clearly one should aim to make the set Y as small as possible con- sistent with still retrieving useful information about the structure of G. In this note we investigate a situation of this type and for the purpose intro- duce a class (3 of extreme groups. (5 is a subclass of the class of finite soluble groups and loosely speaking comprises those groups which contain as few complemented chief factors, as possible, in a given chief series; more precisely, a group G is extreme if it has a chief series with exactly Z(G) complemented chief factors, where Z(G) denotes the nilpotent (or Fitting) length of G. -
Groups with Almost Modular Subgroup Lattice Provided by Elsevier - Publisher Connector
Journal of Algebra 243, 738᎐764Ž. 2001 doi:10.1006rjabr.2001.8886, available online at http:rrwww.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE Groups with Almost Modular Subgroup Lattice provided by Elsevier - Publisher Connector Francesco de Giovanni and Carmela Musella Dipartimento di Matematica e Applicazioni, Uni¨ersita` di Napoli ‘‘Federico II’’, Complesso Uni¨ersitario Monte S. Angelo, Via Cintia, I 80126, Naples, Italy and Yaroslav P. Sysak1 Institute of Mathematics, Ukrainian National Academy of Sciences, ¨ul. Tereshchenki¨ska 3, 01601 Kie¨, Ukraine Communicated by Gernot Stroth Received November 14, 2000 DEDICATED TO BERNHARD AMBERG ON THE OCCASION OF HIS 60TH BIRTHDAY 1. INTRODUCTION A subgroup of a group G is called modular if it is a modular element of the lattice ᑦŽ.G of all subgroups of G. It is clear that everynormal subgroup of a group is modular, but arbitrarymodular subgroups need not be normal; thus modularitymaybe considered as a lattice generalization of normality. Lattices with modular elements are also called modular. Abelian groups and the so-called Tarski groupsŽ i.e., infinite groups all of whose proper nontrivial subgroups have prime order. are obvious examples of groups whose subgroup lattices are modular. The structure of groups with modular subgroup lattice has been described completelybyIwasawa wx4, 5 and Schmidt wx 13 . For a detailed account of results concerning modular subgroups of groups, we refer the reader towx 14 . 1 This work was done while the third author was visiting the Department of Mathematics of the Universityof Napoli ‘‘Federico II.’’ He thanks the G.N.S.A.G.A. -
On the Lattice of Subgroups of a Free Group: Complements and Rank
journal of Groups, Complexity, Cryptology Volume 12, Issue 1, 2020, pp. 1:1–1:24 Submitted Sept. 11, 2019 https://gcc.episciences.org/ Published Feb. 29, 2020 ON THE LATTICE OF SUBGROUPS OF A FREE GROUP: COMPLEMENTS AND RANK JORDI DELGADO AND PEDRO V. SILVA Centro de Matemática, Universidade do Porto, Portugal e-mail address: [email protected] Centro de Matemática, Universidade do Porto, Portugal e-mail address: [email protected] Abstract. A ∨-complement of a subgroup H 6 Fn is a subgroup K 6 Fn such that H ∨ K = Fn. If we also ask K to have trivial intersection with H, then we say that K is a ⊕-complement of H. The minimum possible rank of a ∨-complement (resp., ⊕-complement) of H is called the ∨-corank (resp., ⊕-corank) of H. We use Stallings automata to study these notions and the relations between them. In particular, we characterize when complements exist, compute the ∨-corank, and provide language-theoretical descriptions of the sets of cyclic complements. Finally, we prove that the two notions of corank coincide on subgroups that admit cyclic complements of both kinds. 1. Introduction Subgroups of free groups are complicated. Of course not the structure of the subgroups themselves (which are always free, a classic result by Nielsen and Schreier) but the relations between them, or more precisely, the lattice they constitute. A first hint in this direction is the fact that (free) subgroups of any countable rank appear as subgroups of the free group of rank 2 (and hence of any of its noncyclic subgroups) giving rise to a self-similar structure. -
Finite Coxeter Groups and Their Subgroup Lattices
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 101, 82-94 (1986) Finite Coxeter Groups and Their Subgroup Lattices TOHRUUZAWA * Department of Mathematics, University of Tokyo, Tokyo, 113, Japan Communicated by Walter Feit Received May 4, 1984 INTRODUCTION Galois theory states that if we draw the Hasse diagram of the lattice of intermediary fields between a field and one of its of Galois extensions, and look at it upside down, then we have the subgroup lattice of the Galois group of the extension. Once we have this interpretation of Galois theory in mind, it is quite hard to resist the temptation to attach a group to a non-Galois extension. For example, one might attach the cyclic group of order 4 to the extension Q(2”4)/Q. So if we try to consider the possibility of a more general “Galois theory” or the possibility of a covariant Galois theory (which is in general not possible), we are inevitably led to the investigation of the relation of the structure of a group and its subgroup lattice. Investigation on (roughly) this line commenced with A. Rottlaender, a student of I. Schur, in 1928. We shall show in this note that a nice family of groups is determined by its subgroup lattices. Before explaining our main result, let us fix some notations. Let G be a group. Then by L(G) we denote the set of subgroups of G. This becomes a lattice with the usual set theoretic inclusion relation.