Kernel-Based Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improving the Reliability of Commodity Operating Systems
Improving the Reliability of Commodity Operating Systems MICHAEL M. SWIFT, BRIAN N. BERSHAD, and HENRY M. LEVY University of Washington Despite decades of research in extensible operating system technology, extensions such as device drivers remain a significant cause of system failures. In Windows XP, for example, drivers account for 85% of recently reported failures. This paper describes Nooks, a reliability subsystem that seeks to greatly enhance OS reliability by isolating the OS from driver failures. The Nooks approach is practical: rather than guaranteeing complete fault tolerance through a new (and incompatible) OS or driver architecture, our goal is to prevent the vast majority of driver-caused crashes with little or no change to existing driver and system code. Nooks isolates drivers within lightweight protection domains inside the kernel address space, where hardware and software prevent them from corrupting the kernel. Nooks also tracks a driver’s use of kernel resources to facilitate automatic clean-up during recovery. To prove the viability of our approach, we implemented Nooks in the Linux operating system and used it to fault-isolate several device drivers. Our results show that Nooks offers a substantial increase in the reliability of operating systems, catching and quickly recovering from many faults that would otherwise crash the system. Under a wide range and number of fault conditions, we show that Nooks recovers automatically from 99% of the faults that otherwise cause Linux to crash. While Nooks was designed for drivers, our techniques generalize to other kernel extensions. We demonstrate this by isolating a kernel-mode file system and an in-kernel Internet service. -
Chapter 1. Origins of Mac OS X
1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years. -
Legacy Reuse
Faculty of Computer Science Institute for System Architecture, Operating Systems Group LEGACY REUSE CARSTEN WEINHOLD THIS LECTURE ... ■ So far ... ■ Basic microkernel concepts ■ Drivers, resource management ■ Today: ■ How to provide legacy OS personalities ■ How to reuse existing infrastructure ■ How to make applications happy TU Dresden Legacy Reuse 2 VIRTUALIZATION ■ Virtualization: ■ Reuse legacy OS + applications ■ Run applications in natural environment ■ Problem: Applications trapped in VMs ■ Different resource pools, namespaces ■ Cooperation is cumbersome (network, ...) ■ Full legacy OS in VM adds overhead ■ Multiple desktops? Bad user experience TU Dresden Legacy Reuse 3 MAKING THE CUT ■ Hardware level: Next week ■ Virtualize legacy OS on top of new OS ■ Operating System Personality: ■ Legacy OS interfaces reimplemented on top of – or ported to – new OS ■ Hybrid operating systems: Today ■ Run legacy OS virtualized … ■ … but tightly integrated with new OS TU Dresden Legacy Reuse 4 OPERATING SYSTEM PERSONALITIES TU Dresden Legacy Reuse 5 OS PERSONALITY ■ Idea: Adapt OS / application boundary ■ (Re-)Implement legacy APIs, not whole OS ■ May need to recompile application ■ Benefits: ■ Get desired application, established APIs ■ Good integration (namespaces, files, ...) ■ Smaller overhead than virtualization ■ Flexible, configurable, but more effort? TU Dresden Legacy Reuse 6 MONOLITHIC KERNELS App App Monolithic Kernel System Call Entry Ext2 VFAT IP Stack Disk Driver NIC Driver TU Dresden Legacy Reuse 7 DECOMPOSITION App App App App Monolithic -
Kernel Architectures
A short history of kernels n Early kernel: a library of device drivers, support for threads (QNX) Operating System Kernels n Monolithic kernels: Unix, VMS, OS 360… n Unstructured but fast… n Over time, became very large Ken Birman n Eventually, DLLs helped on size n Pure microkernels: Mach, Amoeba, Chorus… (borrowing some content from n OS as a kind of application Peter Sirokman) n Impure microkernels: Modern Windows OS n Microkernel optimized to support a single OS n VMM support for Unix on Windows and vice versa The great m-kernel debate Summary of First Paper n How big does it need to be? n The Performance of µ-Kernel-Based Systems (Hartig et al. 16th SOSP, Oct 1997) n With a m-kernel protection-boundary crossing forces us to n Evaluates the L4 microkernel as a basis for a full operating system n Change memory -map n Ports Linux to run on top of L4 and compares n Flush TLB (unless tagged) performance to native Linux and Linux running on n With a macro-kernel we lose structural the Mach microkernel protection benefits and fault-containment n Explores the extensibility of the L4 microkernel n Debate raged during early 1980’s Summary of Second Paper In perspective? n The Flux OSKit: A Substrate for Kernel and n L4 seeks to validate idea that a m-kernel Language Research (Ford et al. 16th SOSP, can support a full OS without terrible 1997) cost penalty n Describes a set of OS components designed to be used to build custom operating systems n Opened the door to architectures like the n Includes existing code simply using “glue code” Windows -
The Nizza Secure-System Architecture
Appears in the proceedings of CollaborateCom 2005, San Jose, CA, USA The Nizza Secure-System Architecture Hermann Härtig Michael Hohmuth Norman Feske Christian Helmuth Adam Lackorzynski Frank Mehnert Michael Peter Technische Universität Dresden Institute for System Architecture D-01062 Dresden, Germany [email protected] Abstract rely on a standard OS (including the kernel) to assure their security properties. The trusted computing bases (TCBs) of applications run- To address the conflicting requirements of complete ning on today’s commodity operating systems have become functionality and the protection of security-sensitive data, extremely large. This paper presents an architecture that researchers have devised system architectures that reduce allows to build applications with a much smaller TCB. It the system’s TCB by running kernels in untrusted mode is based on a kernelized architecture and on the reuse of in a secure compartment on top of a small security kernel; legacy software using trusted wrappers. We discuss the de- security-sensitive services run alongside the OS in isolated sign principles, the architecture and some components, and compartments of their own. This architecture is widely re- a number of usage examples. ferred to as kernelized standard OS or kernelized system. In this paper, we describe Nizza, a new kernelized- system architecture. In the design of Nizza, we set out to answer the question of how small the TCB can be made. 1 Introduction We have argued in previous work that the (hardware and software) technologies needed to build small secure-system Desktop and hand-held computers are used for many platforms have become much more mature since earlier at- functions, often in parallel, some of which are security tempts [8]. -
Separating Protection and Management in Cloud Infrastructures
SEPARATING PROTECTION AND MANAGEMENT IN CLOUD INFRASTRUCTURES A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Zhiming Shen December 2017 c 2017 Zhiming Shen ALL RIGHTS RESERVED SEPARATING PROTECTION AND MANAGEMENT IN CLOUD INFRASTRUCTURES Zhiming Shen, Ph.D. Cornell University 2017 Cloud computing infrastructures serving mutually untrusted users provide se- curity isolation to protect user computation and resources. Additionally, clouds should also support flexibility and efficiency, so that users can customize re- source management policies and optimize performance and resource utiliza- tion. However, flexibility and efficiency are typically limited due to security requirements. This dissertation investigates the question of how to offer flexi- bility and efficiency as well as strong security in cloud infrastructures. Specifically, this dissertation addresses two important platforms in cloud in- frastructures: the containers and the Infrastructure as a Service (IaaS) platforms. The containers platform supports efficient container provisioning and execut- ing, but does not provide sufficient security and flexibility. Different containers share an operating system kernel which has a large attack surface, and kernel customization is generally not allowed. The IaaS platform supports secure shar- ing of cloud resources among mutually untrusted users, but does not provide sufficient flexibility and efficiency. Many powerful management primitives en- abled by the underlying virtualization platform are hidden from users, such as live virtual machine migration and consolidation. The main contribution of this dissertation is the proposal of an approach in- spired by the exokernel architecture that can be generalized to any multi-tenant system to improve security, flexibility, and efficiency. -
Research on Virtualisation Technlogy for Real-Time Reconfigurable Systems Tian Xia
Research on virtualisation technlogy for real-time reconfigurable systems Tian Xia To cite this version: Tian Xia. Research on virtualisation technlogy for real-time reconfigurable systems. Electronics. INSA de Rennes, 2016. English. NNT : 2016ISAR0009. tel-01418453 HAL Id: tel-01418453 https://tel.archives-ouvertes.fr/tel-01418453 Submitted on 16 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE INSA Rennes présentée par sous le sceau de l’Université Bretagne Loire pour obtenir le titre de Tian Xia DOCTEUR DE L’INSA RENNES ECOLE DOCTORALE : MATISSE Spécialité : Electronique et Télécommunications LABORATOIRE : IETR Thèse soutenue le 05.07.2016 Research on devant le jury composé de : Virtualization Technology François Verdier Professeur, Université de Nice, Nice / Président for Real-time Emmanuel Grolleau Professeur, ISAE-ENSMA, Chasseneuil-Futuroscope / Rapporteur Reconfigurable Systems Guy Gogniat Professeur, Université de Bretagne-Sud, Lorient / Rapporteur Jean-Luc Bechennec Chargé de Recherche, Ecole Centrale de Nantes, Nantes / Examinateur Jean-Christophe Prévotet Maître de Conférence, INSA, Rennes / Co-encadrant de thèse Fabienne Nouvel Maître de Conférence HDR, INSA, Rennes / Directrice de thèse Research on Virtualization Technology for Real-time Reconfigurable Systems Tian Xia Résumé de la Thèse Aujourd’hui, les systèmes embarqués jouent un rôle prépondérant dans la vie quo- tidienne des utilisateurs. -
Computer Architectures an Overview
Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements. -
L4 – Virtualization and Beyond
L4 – Virtualization and Beyond Hermann Härtig!," Michael Roitzsch! Adam Lackorzynski" Björn Döbel" Alexander Böttcher! #!Department of Computer Science# "GWT-TUD GmbH # Technische Universität Dresden# 01187 Dresden, Germany # 01062 Dresden, Germany {haertig,mroi,adam,doebel,boettcher}@os.inf.tu-dresden.de Abstract Mac OS X environment, using full hardware After being introduced by IBM in the 1960s, acceleration by the GPU. Virtual machines are virtualization has experienced a renaissance in used to test potentially malicious software recent years. It has become a major industry trend without risking the host environment and they in the server context and is also popular on help developers in debugging crashes with back- consumer desktops. In addition to the well-known in-time execution. benefits of server consolidation and legacy In the server world, virtual machines are used to preservation, virtualization is now considered in consolidate multiple services previously located embedded systems. In this paper, we want to look on dedicated machines. Running them within beyond the term to evaluate advantages and virtual machines on one physical server eases downsides of various virtualization approaches. management and helps saving power by We show how virtualization can be increasing utilization. In server farms, migration complemented or even superseded by modern of virtual machines between servers is used to operating system paradigms. Using L4 as the balance load with the potential of shutting down basis for virtualization and as an advanced completely unloaded servers or adding more to microkernel provides a best-of-both-worlds increase capacity. Lastly, virtual machines also combination. Microkernels can contribute proven isolate different customers who can purchase real-time capabilities and small trusted computing virtual shares of a physical server in a data center. -
Context Related Policies on Data Isolation for Organizational Data Using Profiles
© 2015 IJEDR | NC3N 2015 | ISSN: 2321-9939 Context Related Policies on Data Isolation for Organizational Data using Profiles 1Vignesh M, 2Aishwarya K 1M.E Student, 2Assistant Professor, 1, 2 Department of Computer Science and Engineering, Arulmigu Meenakshi Amman College of Engineering, vadamavandal-604410 Kancheepuram, Tamilnadu, India ______________________________________________________________________________________________________ Abstract — General studies have shown that allowing access to enterprise services with smartphones increases employee productivity. Despite this positive scenario, users can install third-party applications on their smartphones, which may provide some malicious applications to access their company confidential information. This poses serious security concerns to sensitive corporate data. One possible solution to this problem is isolation, by keeping applications and data related to work separated from recreational applications. MOSES a solution for separating modes of use in smartphones. MOSES implements soft virtualization through controlled software. Profiles can be easily and dynamically specified by end users. MOSES provides a GUI for this purpose. Profiles can be fine-grained to the level of single object (e.g., file, SMS) and single application. Isolation Using MOSES creating profiles for securing confidential data but that the applications that have root access to the system can bypass MOSES protection. A Novel Attribute Based Access Control Enabled MOSES method proposed to overcome the problem of these root application bypassing the security profile protections. Keywords — MOSES, ABAC, GUI, SP, BYOD, Context ________________________________________________________________________________________________________ I. INTRODUCTION Smartphones allow end users to perform several tasks while being on the move [7]. As a consequence, end users require their personal smartphones to be connected to their work in IT infrastructure [9]. More of the companies nowadays provide mobile versions of their desktop applications [27]. -
Paravirtualizing Linux in a Real-Time Hypervisor
Paravirtualizing Linux in a real-time hypervisor Vincent Legout and Matthieu Lemerre CEA, LIST, Embedded Real Time Systems Laboratory Point courrier 172, F-91191 Gif-sur-Yvette, FRANCE {vincent.legout,matthieu.lemerre}@cea.fr ABSTRACT applications written for a fully-featured operating system This paper describes a new hypervisor built to run Linux in a such as Linux. The Anaxagoros design prevent non real- virtual machine. This hypervisor is built inside Anaxagoros, time tasks to interfere with real-time tasks, thus providing a real-time microkernel designed to execute safely hard real- the security foundation to build a hypervisor to run existing time and non real-time tasks. This allows the execution of non real-time applications. This allows current applications hard real-time tasks in parallel with Linux virtual machines to run on Anaxagoros systems without any porting effort, without interfering with the execution of the real-time tasks. opening the access to a wide range of applications. We implemented this hypervisor and compared perfor- Furthermore, modern computers are powerful enough to mances with other virtualization techniques. Our hypervisor use virtualization, even embedded processors. Virtualiza- does not yet provide high performance but gives correct re- tion has become a trendy topic of computer science, with sults and we believe the design is solid enough to guarantee its advantages like scalability or security. Thus we believe solid performances with its future implementation. that building a real-time system with guaranteed real-time performances and dense non real-time tasks is an important topic for the future of real-time systems. -
Common Coupling As a Measure of Reuse Effort in Kernel-Based Software with Case Studies on the Creation of Mklinux and Darwin
IUScholarWorks at Indiana University South Bend Common Coupling as a Measure of Reuse Effort in Kernel-Based Software with Case Studies on the Creation of MkLinux and Darwin Yu, Liguo To cite this article: Yu, Liguo. “Common Coupling as a Measure of Reuse Effort in Kernel-Based Software with Case Studies on the Creation of MkLinux and Darwin.” Journal of the Brazilian Computer Society14, vol. 14, no. 1, Feb. 2008, pp. 45–55. This document has been made available through IUScholarWorks repository, a service of the Indiana University Libraries. Copyrights on documents in IUScholarWorks are held by their respective rights holder(s). Contact [email protected] for more information. Common Coupling as a Measure of Reuse Effort in Kernel-Based Software with Case Studies on the Creation of MkLinux and Darwin Liguo Yu Department of Informatics Computer and Information Sciences Department Indiana University South Bend South Bend, IN 46634, USA. Fax: 1-574-520-5589 E-mail: [email protected] The initial version of this paper appers in the 19th International Conference on Software Engineering and Knowledge Engineering. Abstract software components, which required less effort in order to be reused to produce Darwin. An obstacle to software reuse is the large number of major modifications that frequently have to be made Keywords: Reuse, common coupling, kernel-based software, as a consequence of dependencies within the reused MkLinux, Darwin software components. In this paper, common coupling is categorized and used as a measure of the dependencies 1. INTRODUCTION between software components. We compared common Software reuse has become a topic of interest within coupling in three operating systems, Linux, FreeBSD, the software community because of its potential and Mach, and related it to the reuse effort of these benefits.