Wt1 Directs the Lineage Specification of Sertoli and Granulosa Cells By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Expression of Aromatase, Estrogen Receptor and , Androgen
0031-3998/06/6006-0740 PEDIATRIC RESEARCH Vol. 60, No. 6, 2006 Copyright © 2006 International Pediatric Research Foundation, Inc. Printed in U.S.A. Expression of Aromatase, Estrogen Receptor ␣ and , Androgen Receptor, and Cytochrome P-450scc in the Human Early Prepubertal Testis ESPERANZA B. BERENSZTEIN, MARI´A SONIA BAQUEDANO, CANDELA R. GONZALEZ, NORA I. SARACO, JORGE RODRIGUEZ, ROBERTO PONZIO, MARCO A. RIVAROLA, AND ALICIA BELGOROSKY Research Laboratory [E.B.B., M.S.B., C.R.G., N.I.S., J.R., M.A.R., A.B.], Hospital de Pediatria Garrahan, Buenos Aires C124 5AAM, Argentina; Centro de Investigaciones en Reproduccion [R.P.], Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C112 1ABG, Argentina ABSTRACT: The expression of aromatase, estrogen receptor ␣ might affect adult testicular cell mass, as well as testicular (ER␣) and  (ER), androgen receptor (AR), and cytochrome P-450 function (8). side chain cleavage enzyme (cP450scc) was studied in prepubertal In humans (9), there are three growth phases of LCs testis. Samples were divided in three age groups (GRs): GR1, during testicular development. Fetal LCs produce testoster- ϭ newborns (1- to 21-d-old neonates, n 5); GR2, postnatal activation one required for fetal masculinization and Insl-3, necessary ϭ stage (1- to 7-mo-old infants, n 6); GR3, childhood (12- to for testicular descent (10). They regress during the third ϭ ␣ 60-mo-old boys, n 4). Absent or very poor detection of ER by trimester of pregnancy. A second wave of infantile LCs has immunohistochemistry in all cells and by mRNA expression was been described during the postnatal surge of luteinizing observed. -
Wt1) – an Effector in Leukemogenesis?
WILMS’ TUMOUR GENE 1 PROTEIN (WT1) – AN EFFECTOR IN LEUKEMOGENESIS? Vidovic, Karina 2010 Link to publication Citation for published version (APA): Vidovic, K. (2010). WILMS’ TUMOUR GENE 1 PROTEIN (WT1) – AN EFFECTOR IN LEUKEMOGENESIS?. Lund University: Faculty of Medicine. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 07. Oct. 2021 Division of Hematology and Transfusion Medicine Lund University, Lund, Sweden WILMS’ TUMOUR GENE 1 PROTEIN (WT1) – AN EFFECTOR IN LEUKEMOGENESIS? Karina Vidovic Thesis 2010 Contact adress Karina Vidovic Division of Hematology and Transfusion Medicine BMC, C14 Klinikgatan 28 SE- 221 84 Lund Sweden Phone +46 46 222 07 30 e-mail: [email protected] ISBN 978-91-86443-99-3 ! Karina Vidovic Printed by Media-Tryck, Lund, Sweden 2 ”The journey of a thousand miles begins with one step” Lao Tzu (Chinese taoist), 600-531 BC 3 4 LIST OF PAPERS This thesis is based on the following papers, referred to in the text by their Roman numerals I. -
An Integrated Genome Screen Identifies the Wnt Signaling Pathway As a Major Target of WT1
An integrated genome screen identifies the Wnt signaling pathway as a major target of WT1 Marianne K.-H. Kima,b, Thomas J. McGarryc, Pilib O´ Broind, Jared M. Flatowb, Aaron A.-J. Goldend, and Jonathan D. Lichta,b,1 aDivision of Hematology/Oncology and cFeinberg Cardiovascular Research Institute, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; bRobert H. Lurie Cancer Center, Northwestern University, Chicago, IL 60611; and dDepartment of Information Technology, National University of Ireland, Galway, Republic of Ireland Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved May 18, 2009 (received for review February 12, 2009) WT1, a critical regulator of kidney development, is a tumor suppressor control. A first generation of in vitro cotransfection and DNA for nephroblastoma but in some contexts functions as an oncogene. binding assays have given way to more biologically relevant exper- A limited number of direct transcriptional targets of WT1 have been iments where manipulation of WT1 levels has been accompanied identified to explain its complex roles in tumorigenesis and organo- by examination of candidate or global gene expression. Classes of genesis. In this study we performed genome-wide screening for direct WT1 targets thus identified consist of inducers of differentiation, WT1 targets, using a combination of ChIP–ChIP and expression arrays. regulators of cell growth and modulators of cell death. WT1 target Promoter regions bound by WT1 were highly G-rich and resembled genes include CDKN1A (22), a negative regulator of the cell cycle; the sites for a number of other widely expressed transcription factors AREG (23), a facilitator of kidney differentiation; WNT4 (24), a such as SP1, MAZ, and ZNF219. -
Influence of Androgen Receptor on the Prognosis of Breast Cancer
Journal of Clinical Medicine Article Influence of Androgen Receptor on the Prognosis of Breast Cancer 1, , 2, 1 2 3 Ki-Tae Hwang * y , Young A Kim y , Jongjin Kim , Jeong Hwan Park , In Sil Choi , Kyu Ri Hwang 4 , Young Jun Chai 1 and Jin Hyun Park 3 1 Department of Surgery, Seoul Metropolitan Government Seoul National University Boramae Medical Center, 39, Boramae-Gil, Dongjak-gu, Seoul 156-707, Korea; [email protected] (J.K.); [email protected] (Y.J.C.) 2 Department of Pathology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156-707, Korea; [email protected] (Y.A.K.); [email protected] (J.H.P.) 3 Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156-707, Korea; [email protected] (I.S.C.); [email protected] (J.H.P.) 4 Department of Obstetrics & Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156-707, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-870-2275; Fax: +82-2-831-2826 These authors contributed equally to this work. y Received: 28 February 2020; Accepted: 8 April 2020; Published: 10 April 2020 Abstract: We investigated the prognostic influence of androgen receptor (AR) on breast cancer. AR status was assessed using immunohistochemistry with tissue microarrays from 395 operable primary breast cancer patients who received curative surgery. The Kaplan–Meier estimator was used to analyze the survival rates and a log-rank test was used to determine the significance of the differences in survival. The Cox proportional hazards model was used to calculate the hazard ratio (HR) and the 95% confidence interval (CI) of survival. -
Immunohistochemical Study of Androgen, Estrogen and Progesterone Receptors in Salivary Gland Tumors
Oral Pathology Oral Pathology Immunohistochemical study of androgen, estrogen and progesterone receptors in salivary gland tumors Fabio Augusto Ito(a) Abstract: The aim of this work was to study the immunohistochemi- (b) Kazuhiro Ito cal expression of androgen receptor, estrogen receptor and progesterone Ricardo Della Coletta(c) Pablo Agustín Vargas(c) receptor in pleomorphic adenomas, Warthin’s tumors, mucoepidermoid Márcio Ajudarte Lopes(c) carcinomas and adenoid cystic carcinomas of salivary glands. A total of 41 pleomorphic adenomas, 30 Warthin’s tumors, 30 mucoepidermoid carcinomas and 30 adenoid cystic carcinomas were analyzed, and the im- (a) DDS, PhD; (b)MD, Professor – Department of Pathology, Londrina State University, munohistochemical expression of these hormone receptors were assessed. Londrina, PR, Brazil. It was observed that all cases were negative for estrogen and progesterone (c) DDS, PhD, Professor, Department of Oral receptors. Androgen receptor was positive in 2 cases each of pleomorphic Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), adenoma, mucoepidermoid carcinoma and adenoid cystic carcinoma. In Piracicaba, SP, Brazil. conclusion, the results do not support a role of estrogen and progesterone in the tumorigenesis of pleomorphic adenomas, Warthin’s tumors, muco- epidermoid carcinomas and adenoid cystic carcinomas. However, andro- gen receptors can play a role in a small set of salivary gland tumors, and this would deserve further studies. Descriptors: Receptors, androgen; Receptors, estrogen; Receptors, progesterone; Salivary gland neoplasms. Corresponding author: Márcio Ajudarte Lopes Semiologia, Faculdade de Odontologia de Piracicaba, UNICAMP Av. Limeira, 901 Caixa Postal: 52 CEP: 13414-903 Piracicaba - SP - Brazil E-mail: [email protected] Received for publication on Oct 01, 2008 Accepted for publication on Sep 22, 2009 Braz Oral Res. -
Cited2 Controls Left-Right Patterning and Heart Development Through a Nodal-Pitx2c Pathway
ARTICLES Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway Simon D Bamforth1,6,Jose´ Braganc¸a1,6, Cassandra R Farthing1,6,Ju¨rgen E Schneider1, Carol Broadbent1, Anna C Michell1, Kieran Clarke2, Stefan Neubauer1, Dominic Norris3, Nigel A Brown4, Robert H Anderson5 & Shoumo Bhattacharya1 Malformations of the septum, outflow tract and aortic arch are the most common congenital cardiovascular defects and occur in mice lacking Cited2, a transcriptional coactivator of TFAP2. Here we show that Cited2–/– mice also develop laterality defects, including right isomerism, abnormal cardiac looping and hyposplenia, which are suppressed on a mixed http://www.nature.com/naturegenetics genetic background. Cited2–/– mice lack expression of the Nodal target genes Pitx2c, Nodal and Ebaf in the left lateral plate mesoderm, where they are required for establishing laterality and cardiovascular development. CITED2 and TFAP2 were detected at the Pitx2c promoter in embryonic hearts, and they activate Pitx2c transcription in transient transfection assays. We propose that an abnormal Nodal-Pitx2c pathway represents a unifying mechanism for the cardiovascular malformations observed in Cited2–/– mice, and that such malformations may be the sole manifestation of a laterality defect. Genetic, developmental and molecular studies over the past decade transcription factors by linking them to EP300 and CREBBP9,15,16. have identified a number of DNA-binding transcription factors that Mutations in Tcfap2a and TFAP2B (Char syndrome) result in cardiac have key roles in cardiac morphogenesis and in the pathogenesis of and aortic arch malformations17,18, suggesting that coactivation of common congenital heart defects1. The role of transcriptional coacti- TFAP2 by CITED2, EP300 and CREBBP is necessary for the normal vators, molecules that connect DNA-binding transcription factors to development of these structures9. -
Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases
Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Olivares, Ana Maria, Oscar Andrés Moreno-Ramos, and Neena B. Haider. 2015. “Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases.” Journal of Experimental Neuroscience 9 (Suppl 2): 93-121. doi:10.4137/JEN.S25480. http:// dx.doi.org/10.4137/JEN.S25480. Published Version doi:10.4137/JEN.S25480 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:27320246 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Journal name: Journal of Experimental Neuroscience Journal type: Review Year: 2015 Volume: 9(S2) Role of Nuclear Receptors in Central Nervous System Running head verso: Olivares et al Development and Associated Diseases Running head recto: Nuclear receptors development and associated diseases Supplementary Issue: Molecular and Cellular Mechanisms of Neurodegeneration Ana Maria Olivares1, Oscar Andrés Moreno-Ramos2 and Neena B. Haider1 1Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA. 2Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia. ABSTRACT: The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. -
Multiple Functions and Essential Roles of Nuclear Receptor Coactivators of Bhlh-PAS Family
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ENDOCRINE REGULATIONS, Vol. 50, No. 3, 165–181, 2016 165 doi:10.1515/enr-2016-0019 Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family Pecenova L, Farkas R Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia E-mail: [email protected] Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numer- ous metabolic pathways, and can be misregulated in many types of cancers. Their enormous func- tional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and high- light some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways. -
Identifying the Role of Wilms Tumor 1 Associated Protein in Cancer Prediction Using Integrative Genomic Analyses
MOLECULAR MEDICINE REPORTS 14: 2823-2831, 2016 Identifying the role of Wilms tumor 1 associated protein in cancer prediction using integrative genomic analyses LI‑SHENG WU1*, JIA-YI QIAN2*, MINGHAI WANG3* and HAIWEI YANG4 1Department of General Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001; 2Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029; 3Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241002; 4Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China Received August 31, 2015; Accepted June 2, 2016 DOI: 10.3892/mmr.2016.5528 Abstract. The Wilms tumor suppressor, WT1 was first iden- regulatory factor 1, glucocorticoid receptor and peroxisome tified due to its essential role in the normal development of proliferator‑activated receptor γ transcription factor binding the human genitourinary system. Wilms tumor 1 associated sites were identified in the upstream (promoter) region of the protein (WTAP) was subsequently revealed to interact with human WTAP gene, suggesting that these transcription factors WT1 using yeast two‑hybrid screening. The present study may be involved in WTAP functions in tumor formation. identified 44 complete WTAP genes in the genomes of verte- brates, including fish, amphibians, birds and mammals. The Introduction vertebrate WTAP proteins clustered into the primate, rodent and teleost lineages using phylogenetic tree analysis. From The Wilms tumor suppressor gene WT1 was first identified 1,347 available SNPs in the human WTAP gene, 19 were due to its essential role in the normal development of the identified to cause missense mutations. -
Androgen Receptor Is Targeted to Distinct Subcellular Compartments in Response to Different Therapeutic Antiandrogens
7392 Vol. 10, 7392–7401, November 1, 2004 Clinical Cancer Research Androgen Receptor Is Targeted to Distinct Subcellular Compartments in Response to Different Therapeutic Antiandrogens Hayley C. Whitaker,1 Sarah Hanrahan,3 informed sequential treatment regime may benefit prostate Nick Totty,3 Simon C. Gamble,1 cancer patients. The observed subnuclear and subcytoplas- Jonathan Waxman,1 Andrew C. B. Cato,4 mic associations of the AR suggest new areas of study to 2 1 investigate the role of the AR in the response and resistance Helen C. Hurst, and Charlotte L. Bevan of prostate cancer to antiandrogen therapy. 1Prostate Cancer Research Group and 2Cancer Research UK Molecular Oncology Unit, Department of Cancer Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom; INTRODUCTION 3Protein Analysis, Cancer Research UK, London Research Institute, Prostate cancer is the most commonly diagnosed male London, United Kingdom; and 4Forschungszentrum Karlsruhe, cancer in the United States and the second leading cause of male Institute of Toxicology and Genetics, Karlsruhe, Germany cancer death (1). Prostate growth is initially androgen depend- ent; thus, treatment involves reducing circulating androgen lev- ABSTRACT els using leuteinizing hormone-releasing hormone analogs and opposing androgen action using antiandrogens. Little is known Purpose: Antiandrogens are routinely used in the treat- about how antiandrogens elicit their effects, although they act at ment of prostate cancer. Although they are known to pre- the level of the androgen receptor (AR), which mediates the vent activation of the androgen receptor (AR), little is effects of all androgens including the major circulating androgen known about the mechanisms involved. This report repre- testosterone and the more potent dihydrotestosterone (DHT). -
Nuclear Receptor Assay Applications Presented Fall 2009
Nuclear Receptor Assay Applications Presented Fall 2009 Click the icon in the upper left hand corner to view speaker notes for slides. Have a question? Ask a Scientist GloResponse is a trademark and Dual-Luciferase is a registered trademark of Promega Corporation. HighWire Press is a registered trademark of the Board of Trustees of the Leland Stanford Junior University ©2009, Promega Corporation. All rights reserved. Application Overview POST-TRANSCRIPTION MIRNA CONTROL In vivo PROTEIN applications INTERACTIONS expression level varies with treatment NUCLEAR RECEPTORS SIGNALING Experimental firefly luciferase PATHWAY construct expression level varies little with PROMOTER treatment Control DISSECTION Renilla luciferase construct 2 Traditional Nuclear Receptor Assays Steroid A good assay Works with endogenous receptors Steroid Receptor RNA Pol II NRE luciferase 3 Your expression analysis found an uncharacterized NR… N-Terminal Hinge C-Terminal Domain Region Domain A/B C D E F DNA Binding Ligand Binding Domain Domain •Response elements are not specifically known •Agonists are not known •Coactivators are not known •How can you do work on this nuclear receptor? A One-Hybrid Luciferase Reporter Assay can help understand the nuclear receptor more fully 4 Universal Nuclear Receptor Assays Ligand binding domain responsible for: • homodimerization (class I receptors) • heterodimerization (class II receptors) • corepressor binding • coactivator binding Nuclear Receptor Ligand Binding Domain pBIND Vector GAL4 BD GAL4 GAL4 GAL4 GAL4 GAL4 GAL4 GAL4 -
Understanding Nuclear Receptor Form and Function Using Structural Biology
F RASTINEJAD and others Understanding NR form 51:3 T1–T21 Thematic Review and function Understanding nuclear receptor form and function using structural biology Correspondence Fraydoon Rastinejad, Pengxiang Huang, Vikas Chandra and Sepideh Khorasanizadeh should be addressed to F Rastinejad Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, Email Florida 32827, USA frastinejad@ sanfordburnham.org Abstract Nuclear receptors (NRs) are a major transcription factor family whose members selectively Key Words bind small-molecule lipophilic ligands and transduce those signals into specific changes in " nuclear receptors gene programs. For over two decades, structural biology efforts were focused exclusively on " steroid hormones the individual ligand-binding domains (LBDs) or DNA-binding domains of NRs. These " transcription factors analyses revealed the basis for both ligand and DNA binding and also revealed receptor " gene regulation conformations representing both the activated and repressed states. Additionally, " metabolism crystallographic studies explained how NR LBD surfaces recognize discrete portions of transcriptional coregulators. The many structural snapshots of LBDs have also guided the development of synthetic ligands with therapeutic potential. Yet, the exclusive structural focus on isolated NR domains has made it difficult to conceptualize how all the NR polypeptide segments are coordinated physically and functionally in the context of receptor Journal of Molecular Endocrinology quaternary architectures. Newly emerged crystal structures of the peroxisome proliferator- activated receptor-g–retinoid X receptor a (PPARg–RXRa) heterodimer and hepatocyte nuclear factor (HNF)-4a homodimer have recently revealed the higher order organizations of these receptor complexes on DNA, as well as the complexity and uniqueness of their domain–domain interfaces.