Tuning the Baird Aromatic Triplet-State Energy of Cyclooctatetraene to Maximize the Self-Healing Mechanism in Organic Fluorophores

Total Page:16

File Type:pdf, Size:1020Kb

Tuning the Baird Aromatic Triplet-State Energy of Cyclooctatetraene to Maximize the Self-Healing Mechanism in Organic Fluorophores Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores Avik K. Patia,b, Ouissam El Bakouric,1, Steffen Jockuschd,1, Zhou Zhoua,1, Roger B. Altmana,b, Gabriel A. Fitzgeralda, Wesley B. Ashere,f,g, Daniel S. Terrya,b, Alessandro Borgiab, Michael D. Holseye,f, Jake E. Batcheldera,b, Chathura Abeywickramab, Brandt Huddlea, Dominic Rufaa, Jonathan A. Javitche,f,g, Henrik Ottossonc, and Scott C. Blancharda,b,2 aDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065; bDepartment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105; cÅngström Laboratory, Department of Chemistry, Uppsala University, Uppsala, 751 20 Sweden; dDepartment of Chemistry, Columbia University, New York, NY 10027; eDepartment of Psychiatry, Columbia University, New York, NY 10032; fDepartment of Pharmacology, Columbia University, New York, NY 10032; and gDivision of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032 Edited by Taekjip Ha, Johns Hopkins University, Baltimore, MD, and approved August 17, 2020 (received for review April 7, 2020) Bright, photostable, and nontoxic fluorescent contrast agents are which can generate toxic reactive oxygen species (ROS). ROS include critical for biological imaging. “Self-healing” dyes, in which triplet singlet oxygen, peroxide, and superoxide radicals that lead to chem- states are intramolecularly quenched, enable fluorescence imaging ical destruction of the fluorophore (photobleaching), photocross- by increasing fluorophore brightness and longevity, while simul- linking to elements in the surrounding environment, and other po- taneously reducing the generation of reactive oxygen species that tentially toxic side effects (7–11). promote phototoxicity. Here, we systematically examine the self- Organic fluorophores commonly used in modern imaging ap- healing mechanism in cyanine-class organic fluorophores spanning plications (e.g., rhodamine- and cyanine-class fluorophores) the visible spectrum. We show that the Baird aromatic triplet-state typically exhibit relatively short excited-state lifetimes and low energy of cyclooctatetraene can be physically altered to achieve probabilities of intersystem crossing to triplet and radical states order of magnitude enhancements in fluorophore brightness and (13–15). Nonetheless, triplet and radical states can become sig- signal-to-noise ratio in both the presence and absence of oxygen. nificantly populated at elevated illumination intensities, an issue BIOPHYSICS AND COMPUTATIONAL BIOLOGY We leverage these advances to achieve direct measurements of that is particularly problematic when imaging low-abundance large-scale conformational dynamics within single molecules at species, including single-molecule and superresolution imaging submillisecond resolution using wide-field illumination and camera- applications (1–5, 11). In this regime, increasing illumination based detection methods. These findings demonstrate the capacity to image functionally relevant conformational processes in biological Significance systems in the kilohertz regime at physiological oxygen concentra- tions and shed important light on the multivariate parameters critical Fluorescence imaging, a central pillar of medical and funda- to self-healing organic fluorophore design. mental research, is hampered by stochastic blinking, limited photon budgets, and phototoxicities of organic fluorophores. self-healing fluorophore | photostability | Baird aromaticity | Here, we use quantum chemical calculations and targeted cyclooctatetraene | single-molecule imaging synthetic strategies to tune the Baird aromatic triplet-state energy of cyclooctatetraene to enhance its capacity to medi- – espite remarkable progress (1 5), fluorescence imaging ate intramolecular triplet−triplet energy transfer with distinct Dpursuits, which are a central pillar of both medical and organic fluorophores spanning the visible spectrum. By tuning fundamental research, remain severely hampered by the limited the efficiency of the self-healing mechanism, we generate durability and stochastic blinking of organic fluorophores. Such cyanine-class fluorophore derivatives with improved intrinsic issues reduce photon budgets and signal-to-noise ratios, thereby brightness and photostability, and reduced reactive oxygen compromising the information content of the experiments per- species generation. We leverage these advances to extend the formed. Related considerations limit superresolution imaging time scale of camera-based, single-molecule imaging tech- methods (6), the temporal resolution that can be achieved when niques, including Förster (fluorescence) resonance energy examining biological function, and the interpretation of dynamic transfer methods, to the kilohertz regime in fully oxygenated processes within individual molecules at the single-molecule scale. physiological buffers. The performance of organic fluorophores in experimental settings is maximized when excitation-induced separation of va- Author contributions: A.K.P., O.E.B., S.J., R.B.A., W.B.A., D.S.T., J.A.J., H.O., and S.C.B. lence electrons leads to reliable and repeated relaxation back to designed research; A.K.P., O.E.B., S.J., R.B.A., G.A.F., W.B.A., A.B., M.D.H., J.E.B., C.A., the ground state. Performance demands are particularly accen- B.H., and D.R. performed research; Z.Z. and D.S.T. contributed new reagents/analytic tools; A.K.P., O.E.B., S.J., R.B.A., G.A.F., W.B.A., D.S.T., A.B., J.A.J., H.O., and S.C.B. analyzed tuated in single-molecule applications, where photon emission- data; and A.K.P., O.E.B., S.J., R.B.A., W.B.A., D.S.T., A.B., J.A.J., H.O., and S.C.B. wrote induced relaxation must occur over millions of cycles, while the paper. nonfluorescent decay pathways must be minimized. The flux of Competing interest statement: S.C.B. and R.B.A. have an equity interest in Lumidyne photon emission in fluorescent species can be severely compro- Technologies. mised when excited-state electrons undergo intersystem crossing This article is a PNAS Direct Submission. to relatively long-lived, nonfluorescing triplet and radical states This open access article is distributed under Creative Commons Attribution-NonCommercial- (Fig. 1A), whose lifetimes (ca. 100 μs to seconds) are orders of NoDerivatives License 4.0 (CC BY-NC-ND). magnitude longer than singlet excited states (ca. 0.001 μsto 1O.E.B., S.J., and Z.Z. contributed equally to this work. 0.1 μs). Correspondingly, triplet states can dramatically reduce 2To whom correspondence may be addressed. Email: [email protected]. the number of detected photons per unit time (brightness). The This article contains supporting information online at https://www.pnas.org/lookup/suppl/ relatively long lifetimes and high energies of triplet and radical doi:10.1073/pnas.2006517117/-/DCSupplemental. states also render them prone to reactions with molecular oxygen, First published September 10, 2020. www.pnas.org/cgi/doi/10.1073/pnas.2006517117 PNAS | September 29, 2020 | vol. 117 | no. 39 | 24305–24315 Downloaded by guest on September 30, 2021 ABCTriplet state (T ) + − Self-healing dyes 1 ROXS ROXS or ROXS SO3 O3S R S1 ISC L R − R T R H R L 1 D or N N 8h H Redox process n L L + R n = 1, Cy3 (step I) R T1vert H H n = 2, Cy5 → D L n = 3, Cy7 8h TS 3 COT TS(S0) H ΔEBS E E TET TS TS ∆ T ROXS Energy D4h D4h Absorption Fluorescence inv L E 1 3 Δ COT H Dye* Triplet-triplet energy Triplet-triplet transfer (TET) (step II) L + Redox process D D ROXS 2d 2d H or − S ROXS 0 Intramolecular collision Singlet ground state (S0) D Potassium borate O (0.5 M, pH 8.5) TSQ HOOC Dye NH2 TSQ-NHS HOOC Dye NH dd H2O, DMSO rt, 2 hrs E F 5 1 10 4 3 2 1,2-DAC(I) DAC O 8 ) 1 − N 1,5-DAC DAC H 6 [1,4-DAC(I)] 1,3-DAC (kJ mol AC Triplet state 4 AC Me-COT Triplet state ring distortion Triplet energy of COT molecules energy of COT 2 Baird aromatic 110 115 120 125 130 135 140 Me-COT Triplet energy of COT molecules G (kJ mol−1) 3 3 3 Me-COT AC DAC −1 ET (kJ mol ) COT 112.3 117.2 131.6 molecules 115.5 144.9 173.8 Dyes 3Cy7 3Cy5 3Cy3 Fig. 1. Strategies for triplet-state quenching of organic fluorophores. (A) Simplified state energy diagram for fluorophore excitation and relaxation pathways including fluorophore’s triplet-state quenching by small-molecule protective agents, such as COT and a combination of reducing and oxidizing + – species (ROXS). R ,R,S0,T1, and ISC indicate radical cation, radical anion, singlet ground state, triplet state, and intersystem crossing of a fluorophore, respectively. The rectangular boxes show the electron and spin configurations for the corresponding states of a fluorophore and a COT molecule. H and L indicate highest occupied and lowest unoccupied molecular orbital, respectively. (B) Representative examples of self-healing organic fluorophores, in which a COT molecule is covalently conjugated to cyanine-class organic fluorophores through a flexible linker (squiggly line). R represents electronic substituents (Top). Schematic shows intramolecular collisions between the triplet state of a fluorophore and the ground state of a COT molecule, facilitating triplet quenching of the fluorophore through TET (Bottom). (C) Schematics of relative energy changes of a COT molecule in S0 and T1 potential energy surfaces (12). ΔEinv, ΔEBS, ΔETS(S0)→T1vert, ET, and TS are ring inversion barrier energy, bond-shifting energy, energy for vertical excitation from the planar singlet (D4h)tothe triplet state, triplet energy, and transition state, respectively. D2d, D4h, and D8h are the Schoenflies point group notations, which collectively represent all symmetry elements within a molecule at a certain structure. While the D2d minimum is puckered, the D4h and D8h transition states are planar and, respec- tively, bond-length alternate and bond-length equalized forms of COT in the S0 state. (D) Generalized synthetic strategy for self-healing fluorophores. (E) Anisotropy of induced current density plot (displayed as clockwise) of an amide substituted COT molecule (AC) in its triplet state (SI Appendix, Supplementary Methods).
Recommended publications
  • The Green Fluorescent Protein
    P1: rpk/plb P2: rpk April 30, 1998 11:6 Annual Reviews AR057-17 Annu. Rev. Biochem. 1998. 67:509–44 Copyright c 1998 by Annual Reviews. All rights reserved THE GREEN FLUORESCENT PROTEIN Roger Y. Tsien Howard Hughes Medical Institute; University of California, San Diego; La Jolla, CA 92093-0647 KEY WORDS: Aequorea, mutants, chromophore, bioluminescence, GFP ABSTRACT In just three years, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology. Its amazing ability to generate a highly visible, efficiently emitting internal fluorophore is both intrin- sically fascinating and tremendously valuable. High-resolution crystal structures of GFP offer unprecedented opportunities to understand and manipulate the rela- tion between protein structure and spectroscopic function. GFP has become well established as a marker of gene expression and protein targeting in intact cells and organisms. Mutagenesis and engineering of GFP into chimeric proteins are opening new vistas in physiological indicators, biosensors, and photochemical memories. CONTENTS NATURAL AND SCIENTIFIC HISTORY OF GFP .................................510 Discovery and Major Milestones .............................................510 Occurrence, Relation to Bioluminescence, and Comparison with Other Fluorescent Proteins .....................................511 PRIMARY, SECONDARY, TERTIARY, AND QUATERNARY STRUCTURE ...........512 Primary Sequence from
    [Show full text]
  • Some New Nitrogen Bridgehead Heterocyclic Cyanine Dyes
    Some New Nitrogen Bridgehead Heterocyclic Cyanine Dyes A. I. M. KORAIEM, H. A. SHINDY, and R. M. ABU EL-HAMD Department of Chemistry, Aswan Faculty of Science, Aswan, Egypt Received 21 July 1998 Accepted for publication 30 December 1999 New monomethine, trimethine, and azomethine cyanine dyes of pyrazolo^o'iSjôJÍpyrazinio/l^- oxa£Ínio)[2,3,4-ij']quinolin-ll-ium bromides were prepared. These cyanines were identified by ele­ mental and spectral analyses. The visible absorption spectra of some selected dyes were investigated in single and mixed solvents, and also in aqueous buffer solutions. The spectral shifts are discussed in relation to molecular structure and in terms of medium effects. Molecular complex formation with DMF was verified through mixed-solvent studies. As an extension to our earlier work on the syn­ Extra quaternization of the former intermediates thesis and studies of cyanine dyes [1—3], some new using an excess amount of ethyl iodide under con­ nitrogen bridgehead heterocyclic cyanine dye moi­ trolled conditions gave 9-ethyl-8-R-10-methylpyrazo- eties have been synthesized in view of the applica­ lo[4^5^5,6](pyrazinio/l,4-oxazinio) [2,3,4- zj']quinolin- bility of such compounds in production of photother- ll(9)-ium bromides iodides (IVa—IVe). Further re­ mographic imaging materials [4], electrophotographic action of the latter compounds with iV-methylpyridi- lithographic printing material for semiconductor laser nium, -quinolinium, resp. -isoquinolinium iodide in­ exposure [5], and as indicator and pH sensors [6], or volving active hydrogen atom in the position 11 or as antitumour agents [7]. 8 under piperidine catalysis gave the correspond­ Within these respects, pyrazolo[4',5':5,6](pyrazi- ing unsymmetrical bromides iodides of 9-ethyl-8-R- nio/1,4-oxazinio) [2,3,4- i,j\ quinolin-11-ium bromides pyrazolo[4^5^5,6](pyrazinio/l,4-oxazinio) [2,3,4- i,j]- Ilia—IIIc were used as key intermediates for the dye quinolin-ll-ium-10[4(l)]-monomethine cyanine dyes synthesis.
    [Show full text]
  • Microenvironment-Triggered Dual-Activation of a Photosensitizer
    www.nature.com/scientificreports OPEN Microenvironment‑triggered dual‑activation of a photosensitizer‑ fuorophore conjugate for tumor specifc imaging and photodynamic therapy Chang Wang1, Shengdan Wang1, Yuan Wang1, Honghai Wu1, Kun Bao2, Rong Sheng1* & Xin Li1* Photodynamic therapy is attracting increasing attention, but how to increase its tumor‑specifcity remains a daunting challenge. Herein we report a theranostic probe (azo‑pDT) that integrates pyropheophorbide α as a photosensitizer and a NIR fuorophore for tumor imaging. The two functionalities are linked with a hypoxic‑sensitive azo group. Under normal conditions, both the phototoxicity of the photosensitizer and the fuorescence of the fuorophore are inhibited. While under hypoxic condition, the reductive cleavage of the azo group will restore both functions, leading to tumor specifc fuorescence imaging and phototoxicity. The results showed that azo‑PDT selectively images BEL‑7402 cells under hypoxia, and simultaneously inhibits BEL‑7402 cell proliferation after near‑infrared irradiation under hypoxia, while little efect on BEL‑7402 cell viability was observed under normoxia. These results confrm the feasibility of our design strategy to improve the tumor‑ targeting ability of photodynamic therapy, and presents azo‑pDT probe as a promising dual functional agent. Cancer is one of the most common causes of death, and more and more therapeutic strategies against this fatal disease have emerged in the past few decades. Among these strategies, photodynamic therapy has attracted much attention1. Tis therapy is based on singlet oxygen produced by photosensitizers under the irradiation with light of a specifc wavelength to damage tumor tissues (Fig. 1a). Since the photo-damaging efect is induced by the interaction between a photosensitizer and light, tumor-specifc therapy may be realized by focusing the light to the tumor site.
    [Show full text]
  • Cyanine Dye–Nucleic Acid Interactions
    Top Heterocycl Chem (2008) 14: 11–29 DOI 10.1007/7081_2007_109 © Springer-Verlag Berlin Heidelberg Published online: 23 February 2008 Cyanine Dye–Nucleic Acid Interactions Bruce A. Armitage Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA [email protected] 1Introduction................................... 12 2 Symmetrical Cyanines ............................. 14 2.1 NoncovalentBinding.............................. 14 2.2 CovalentBinding................................ 16 3 Unsymmetrical Cyanines ............................ 17 3.1 NoncovalentBinding.............................. 17 3.1.1InsightsintoPhotophysics........................... 17 3.1.2NewUnsymmetricalDyes............................ 18 3.1.3Applications................................... 21 3.2 CovalentBinding................................ 23 3.2.1DNA-ConjugatedDyes............................. 24 3.2.2PNA-ConjugatedDyes.............................. 25 3.2.3Peptide-andProtein-ConjugatedDyes.................... 26 4Conclusions................................... 27 References ....................................... 28 Abstract Cyanine dyes are widely used in biotechnology due to their ability to form fluor- escent complexes with nucleic acids. This chapter describes how the structure of the dye determines the mode in which it binds to nucleic acids as well as the fluorescence prop- erties of the resulting complexes. Related dyes, such as hemicyanines and styryl dyes, are briefly described as well. In addition, covalent conjugates
    [Show full text]
  • Fluorescent Protein-Based Tools for Neuroscience
    !1 !2 Fluorescent protein-based tools Outline for neuroscience An animatd primer on biosensor development Fluorescent proteins (FPs) Robert E. Campbell Department of Chemistry Other fluorophore technologies Single FP-based biosensors Imaging Structure & Function in the Nervous System Cold Spring Harbor, July 31, 2019. Lots of structural Lots of structural information information & Transmitted light Fluorescence microscopy of fluorescent color microscopy of live cells live cells No molecular provides molecular information information (more colors = more information) !5 !6 Fluorescence microscopy requires fluorophores Non-natural fluorophores for protein labelling Trends Bioch. Sci., 1984, 9, 88-91. O O O N O N 495 nm 519 nm 557 nm 576 nm - - CO2 CO2 S O O O N O N C N N C S ϕ = quantum yield - - ε = extinction coefficient CO2 CO2 ϕ Brightness ~ * ε S C i.e., for fluorescein N Proteins of interest ϕ = 0.92 N Fluorescein Tetramethylrhodamine ε = 73,000 M-1cm-1 C S (FITC) (TRITC) A non-natural fluorophore must be chemically linked to Non-natural fluorophores made by chemical synthesis a protein of interest… !7 !8 Getting non-natural fluorophores into a cell Some sea creatures make natural fluorophores Trends Bioch. Sci., 1984, 9, 88-91. O O O N O N Bioluminescent - Fluorescent CO2 CO -- S 2 S C N NHN C H S S Chemically labeled proteins of interest Microinjection with micropipet O O O N O N Fluorescent - CO2 CO - S 2 N NH H S …and then manually injected into a cell Some natural fluorophores are genetically encoded proteins http://www.luminescentlabs.org/and can be transplanted into cells as DNA! 228 OSAMU SHIMOMURA, FRANK H.
    [Show full text]
  • Fluorophore Referenceguide
    Fluorophore Reference Guide Fluorophore Excitation and Emission Data Laser Lines Broad UV Excitation Excitation Maxima Emission Maxima Emission Filters 290-365 nm LP = Long pass filter DF = Band pass filter Excel. ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ DAPI: 359 nm ____ SP = Short pass filter Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ GFP (Green Fluorescent Protein): 395 nm ____ 400 nm Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Coumarin: 402 nm ____ 425 nm Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ AttoPhos: 440 nm ____ ____ 443 nm: Coumarin 450 nm Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Acridine Orange: 460/500 nm ____ ____ 461 nm: DAPI Good __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ R-phycoerythrin: 480/565 nm ____ Excel.
    [Show full text]
  • Synthesis of Near-Infrared Heptamethine Cyanine Dyes
    Georgia State University ScholarWorks @ Georgia State University Chemistry Theses Department of Chemistry 4-26-2010 Synthesis of Near-Infrared Heptamethine Cyanine Dyes Jamie Loretta Gragg Georgia State University, [email protected] Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_theses Recommended Citation Gragg, Jamie Loretta, "Synthesis of Near-Infrared Heptamethine Cyanine Dyes." Thesis, Georgia State University, 2010. https://scholarworks.gsu.edu/chemistry_theses/28 This Thesis is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. SYNTHESIS OF NEAR-INFRARED HEPTAMETHINE CYANINE DYES by JAMIE L. GRAGG Under the Direction of Dr. Maged M. Henary ABSTRACT Carbocyanine dyes are organic compounds containing chains of conjugated methine groups with electron-donating and electron-withdrawing substituents at the terminal 1 2 + - heterocycles of the general formula [R -(CH)n-R ] X . The synthetic methodology and optical properties of carbocyanines will be discussed. This thesis consists of two parts: (A) synthesis and optical properties of novel carbocyanine dyes substituted with various amines and the synthesis of unsymmetrical carbocyanine dyes containing monofunctional groups for bioconjugation. (B) synthesis of heptamethine carbocyanine dyes to be used for image-guided surgery. ii In part A, the synthesis of carbocyanine dyes functionalized with various amines and studies of their optical properties with respect to absorbance, fluorescence, quantum yield and extinction coefficient will be presented. These property studies will aid in designing efficient dyes for future biomedical applications.
    [Show full text]
  • Two-Photon Excited Photoconversion of Cyanine-Based Dyes
    Two-photon excited photoconversion of cyanine-based dyes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kwok, Sheldon J. J. et al. “Two-Photon Excited Photoconversion of Cyanine-Based Dyes.” Scientific Reports 6 (2016): 23866. © 2016 Macmillan Publishers Limited As Published http://dx.doi.org/10.1038/srep23866 Publisher Nature Publishing Group Version Final published version Citable link http://hdl.handle.net/1721.1/108348 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ www.nature.com/scientificreports OPEN Two-photon excited photoconversion of cyanine-based dyes Sheldon J. J. Kwok1,2,*, Myunghwan Choi1,3,*, Brijesh Bhayana1, Xueli Zhang4,5, Chongzhao Ran4 & Seok-Hyun Yun1,2 Received: 14 October 2015 The advent of phototransformable fluorescent proteins has led to significant advances in optical Accepted: 15 March 2016 imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these Published: 31 March 2016 proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine- based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal.
    [Show full text]
  • Water-Soluble Pyrrolopyrrole Cyanine (Ppcy) NIR Fluorophores† Cite This: Chem
    Erschienen in: Chemical Communications ; 2014, 50. - S. 4755-4758 ChemComm View Article Online COMMUNICATION View Journal | View Issue Water-soluble pyrrolopyrrole cyanine (PPCy) NIR fluorophores† Cite this: Chem. Commun., 2014, 50, 4755 Simon Wiktorowski, Christelle Rosazza, Martin J. Winterhalder, Ewald Daltrozzo Received 7th February 2014, and Andreas Zumbusch* Accepted 21st March 2014 DOI: 10.1039/c4cc01014k www.rsc.org/chemcomm Water-soluble derivatives of pyrrolopyrrole cyanines (PPCys) have been dyes, BODIPYs or others.7 Notable are also advances in other fields, synthesized by a post-synthetic modification route. In highly polar like the engineering of GFP-related fluorescing proteins or quantum media, these dyes are excellent NIR fluorophores. Labeling experiments dots, which have resulted in the synthesis of novel systems with NIR show how these novel dyes are internalized into mammalian cells. emission.8 To date, however, only a few water-soluble dyes with strong NIR absorptions and emissions have been known. Apart from the Near-infrared (NIR) light absorbing and emitting compounds have general scarcity of NIR absorbing molecules, the main reason for this attracted a lot of interest since the 1990’s.1 Initially, this was motivated is that NIR absorption is commonly observed in extended p-systems by their use in optical data storage or as laser dyes. Recently, however, which most often are hydrophobic. The incorporation of hydrophilic new applications of NIR dyes have emerged, which has led to a surge of functionalities into
    [Show full text]
  • Chiral Indole Intermediates and Their Fluorescent
    (19) TZZ_ _T (11) EP 1 525 265 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C09B 23/02 (2006.01) G01N 33/58 (2006.01) 20.07.2011 Bulletin 2011/29 G01N 33/533 (2006.01) C12Q 1/00 (2006.01) C07D 491/22 (2006.01) C07D 403/06 (2006.01) (21) Application number: 03808367.1 (86) International application number: (22) Date of filing: 09.05.2003 PCT/US2003/014632 (87) International publication number: WO 2004/039894 (13.05.2004 Gazette 2004/20) (54) CHIRAL INDOLE INTERMEDIATES AND THEIR FLUORESCENT CYANINE DYES CONTAINING FUNCTIONAL GROUPS CHIRALE INDOLE ALS ZWISCHENPRODUKTE UND DARAUS HERGESTELLTE CYANINFLUORESZENZFARBSTOFFE MIT FUNKTIONELLEN GRUPPEN INTERMEDIAIRES CHIRAUX D’INDOLE ET LEURS COLORANTS DE CYANINE FLUORESCENTS CONTENANT DES GROUPES FONCTIONNELS (84) Designated Contracting States: • WEST, Richard Martin, AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Amersham Biosciences UK Ltd. HU IE IT LI LU MC NL PT RO SE SI SK TR Buckinghamshire HP7 9NA (GB) (30) Priority: 10.05.2002 US 379107 P (74) Representative: Franks, Barry Gerard et al GE Healthcare Limited (43) Date of publication of application: Amersham Place 27.04.2005 Bulletin 2005/17 Little Chalfont Buckinghamshire HP7 9NA (GB) (60) Divisional application: 10178959.2 / 2 258 776 (56) References cited: WO-A-02/26891 US-A- 5 268 486 (73) Proprietors: US-A- 6 133 445 US-A- 6 133 445 • CARNEGIE MELLON UNIVERSITY US-B1- 6 180 087 Pittsburgh, Pennsylvania 15213 (US) • GE Healthcare Limited Remarks: Little Chalfont Thefilecontainstechnicalinformationsubmittedafter Buckinghamshire HP7 9NA (GB) the application was filed and not included in this specification (72) Inventors: • MUJUMDAR, Ratnaker, B.
    [Show full text]
  • Chemical Probes to Visualize Bacterial Cell Structure and Physiology
    molecules Review From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology Jonathan Hira 1, Md. Jalal Uddin 1 , Marius M. Haugland 2 and Christian S. Lentz 1,* 1 Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; [email protected] (J.H.); [email protected] (M.J.U.) 2 Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; [email protected] * Correspondence: [email protected] Academic Editor: Steven Verhelst Received: 30 September 2020; Accepted: 23 October 2020; Published: 26 October 2020 Abstract: Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways. Keywords: activity-based probe; antibiotic conjugate; bacterial imaging; bacterial uptake; fluorogenic substrate; metabolic labeling; phenotypic heterogeneity 1. Introduction—From 19th Century Microbiology to Modern Day Chemical Biology If chemical biology can be defined as the ‘interrogation of biological systems with chemical approaches’ [1], we must acknowledge some of the first microbiologists as chemical biologists.
    [Show full text]
  • Near-Infrared Genetically Encoded Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome
    Near-infrared genetically encoded positive calcium indicator based on GAF-FP bacterial phytochrome The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Subach,Oksana M., Natalia V. Barykina, Konstantin V. Anokhin, Kiryl D. Piatkevich, and Fedor V. Subach, "Near-infrared genetically encoded positive calcium indicator based on GAF-FP bacterial phytochrome." International Journal of Molecular Sciences 20, 14 (July 2019): no. 3488 doi 10.3390/ijms20143488 ©2019 Author(s) As Published 10.3390/ijms20143488 Publisher Multidisciplinary Digital Publishing Institute Version Final published version Citable link https://hdl.handle.net/1721.1/125333 Terms of Use Creative Commons Attribution Detailed Terms https://creativecommons.org/licenses/by/4.0/ International Journal of Molecular Sciences Article Near-Infrared Genetically Encoded Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome 1, 2, 2,3 Oksana M. Subach y , Natalia V. Barykina y , Konstantin V. Anokhin , Kiryl D. Piatkevich 4 and Fedor V. Subach 1,* 1 National Research Center “Kurchatov Institute”, Moscow 123182, Russia 2 P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia 3 Lomonosov Moscow State University, Moscow 119991, Russia 4 MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA * Correspondence: [email protected]; Tel.: +07-968-962-7083 These authors contributed equally to this work. y Received: 31 May 2019; Accepted: 15 July 2019; Published: 16 July 2019 Abstract: A variety of genetically encoded calcium indicators are currently available for visualization of calcium dynamics in cultured cells and in vivo. Only one of them, called NIR-GECO1, exhibits fluorescence in the near-infrared region of the spectrum.
    [Show full text]