1 ORBIT PARAMETRIZATIONS FOR K3 SURFACES MANJUL BHARGAVA1, WEI HO2 and ABHINAV KUMAR3 1Department of Mathematics, Princeton University, Princeton, NJ 08544;
[email protected] 2Department of Mathematics, University of Michigan, Ann Arbor, MI 48109;
[email protected] 3Department of Mathematics, Massachusetts Institute of Technology, Cambridge MA 02139; Current address: Department of Mathematics, Stony Brook University, Stony Brook, NY 11794;
[email protected] Abstract We study moduli spaces of lattice-polarized K3 surfaces in terms of orbits of representations of algebraic groups. In particular, over an algebraically closed field of characteristic 0, we show that in many cases, the nondegenerate orbits of a representation are in bijection with K3 surfaces (up to suitable equivalence) whose N´eron-Severi lattice contains a given lattice. An immediate consequence is that the corresponding moduli spaces of these lattice-polarized K3 surfaces are all unirational. Our constructions also produce many fixed-point-free automorphisms of positive arXiv:1312.0898v2 [math.AG] 24 May 2016 entropy on K3 surfaces in various families associated to these representations, giving a natural extension of recent work of Oguiso. 2010 Mathematics Subject Classification: 14J28, 14J10, 14J50, 11Exx Contents 1 Introduction 2 2 Preliminaries 11 3 Some classical moduli spaces for K3 surfaces with low Picard num- ber 15 c The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (<http://creativecommons.org/licenses/by/3.0/>),