Iodinated Contrast Media Guideline
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cardiac CT - Quantitative Evaluation of Coronary Calcification
Clinical Appropriateness Guidelines: Advanced Imaging Appropriate Use Criteria: Imaging of the Heart Effective Date: January 1, 2018 Proprietary Date of Origin: 03/30/2005 Last revised: 11/14/2017 Last reviewed: 11/14/2017 8600 W Bryn Mawr Avenue South Tower - Suite 800 Chicago, IL 60631 P. 773.864.4600 Copyright © 2018. AIM Specialty Health. All Rights Reserved www.aimspecialtyhealth.com Table of Contents Description and Application of the Guidelines ........................................................................3 Administrative Guidelines ........................................................................................................4 Ordering of Multiple Studies ...................................................................................................................................4 Pre-test Requirements ...........................................................................................................................................5 Cardiac Imaging ........................................................................................................................6 Myocardial Perfusion Imaging ................................................................................................................................6 Cardiac Blood Pool Imaging .................................................................................................................................12 Infarct Imaging .....................................................................................................................................................15 -
Xx250 Spc 2015 Uk
SUMMARY OF PRODUCT CHARACTERISTICS 1 NAME OF THE MEDICINAL PRODUCT XENETIX 250 (250 mgI/ml) Solution for injection. 2 QUALITATIVE AND QUANTITATIVE COMPOSITION per ml 50 ml 100 ml 200 ml 500 ml Iobitridol (INN) 548.4 mg 27.42 g 54.84 g 109.68 g 274.2 g Iodine corresponding to 250 mg 12.5 g 25 g 50 g 125 g Excipient with known effect : Sodium (up to 3.5 mg per 100 mL). For the full list of excipients, see section 6.1. 3 PHARMACEUTICAL FORM Solution for injection. Clear, colourless to pale yellow solution 4. CLINICAL PARTICULARS 4.1. Therapeutic indications For adults and children undergoing: . whole-body CT . venography . intra-arterial digital subtraction angiography . ERP/ERCP This medicinal product is for diagnostic use only. 4.2. Posology and method of administration The dosage may vary depending on the type of examination, the age, weight, cardiac output and general condition of the patient and the technique used. Usually the same iodine concentration and volume are used as with other iodinated X-ray contrast in current use. As with all contrast media, the lowest dose necessary to obtain adequate visualisation should be used. Adequate hydration should be assured before and after administration as for other contrast media. As a guideline, the recommended dosages are as follows: Indications Recommended dosage Whole-body CT The doses of contrast medium and the rates of administration depend on the organs under investigation, the diagnostic problem and, in particular, the different scan and image-reconstruction times of the scanners in use. -
Assessment of the Coronary Artery in High-Pitch, Dual-Source CT
CARDIAC IMAGING Iran J Radiol. 2017 July; 14(3):e22024. doi: 10.5812/iranjradiol.22024. Published online 2017 July 1. Research Article Assessment of the Coronary Artery in High-Pitch, Dual-Source CT Aortography Without ECG Synchronization Hyeong Gi Choi,1 Mi Jung Park,1,* Ho Cheol Choi,1 Hye Young Choi,1 Hwa Seon Shin,1 Jae Boem Na,1 Jae Min Cho,1 and Dae Seob Choi1 1Department of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Chilam-Dong, Jinju City, Gyeongnam-Do, Republic of Korea *Corresponding author: Mi Jung Park, MD, Department of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, 90, Chilam-Dong, Jinju, Gyeongnam-Do, Republic of Korea. Tel: +82-557508814, Fax: +82-557581568, E-mail: [email protected] Received 2016 December 22; Revised 2017 March 17; Accepted 2017 April 01. Abstract Background: The high pitch, dual source computed tomography (CT) provides motion-free aortic imaging. Objectives: To evaluate the image quality of coronary artery using dual-source CT aortography without electrocardiogram (ECG) synchronization. Patients and Methods: One hundred fifty patients (87 men; mean age; 63.7 ± 13.0 years, mean heart rate; 64.7 ± 6.6 beats/min) with suspected or known aortic disease underwent non-ECG gated, high-pitch, dual-source CT aortography. No beta blocker or ni- troglycerin was administered for the patients. The image quality of each coronary artery segment and its ostium was graded on a three-point scale (excellent, moderate, and non-diagnostic image quality). Results: Most patients (88.7%) showed diagnostic image quality in the ostia of the left main and right coronary artery. -
Prevalence of Coronary Artery Disease Evaluated by Coronary CT Angiography in Women with Mammographically Detected Breast Arterial Calcifications
RESEARCH ARTICLE Prevalence of Coronary Artery Disease Evaluated by Coronary CT Angiography in Women with Mammographically Detected Breast Arterial Calcifications Leila Mostafavi1*, Wanda Marfori2, Cesar Arellano1, Alessia Tognolini1, William Speier3, Ali Adibi1, Stefan G. Ruehm1 1 Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America, 2 Department of Radiological Sciences, University of California Irvine, Irvine, CA, United States of America, 3 Medical Imaging Informatics, Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States of America * [email protected] Abstract To assess the correlation between breast arterial calcifications (BAC) on digital mammogra- OPEN ACCESS phy and the extent of coronary artery disease (CAD) diagnosed with dual source coronary Citation: Mostafavi L, Marfori W, Arellano C, computed tomography angiography (CTA) in a population of women both symptomatic and Tognolini A, Speier W, Adibi A, et al. (2015) asymptomatic for coronary artery disease. 100 consecutive women (aged 34 – 86 years) Prevalence of Coronary Artery Disease Evaluated by who underwent both coronary CTA and digital mammography were included in the study. Coronary CT Angiography in Women with Mammographically Detected Breast Arterial Health records were reviewed to determine the presence of cardiovascular risk factors such Calcifications. PLoS ONE 10(4): e0122289. as hypertension, hyperlipidemia, diabetes mellitus, and smoking. Digital mammograms doi:10.1371/journal.pone.0122289 were reviewed for the presence and degree of BAC, graded in terms of severity and extent. Academic Editor: Barry I Hudson, University of Coronary CTAs were reviewed for CAD, graded based on the extent of calcified and non- Miami, UNITED STATES calcified plaque, and the degree of major vessel stenosis. -
ACR Manual on Contrast Media
ACR Manual On Contrast Media 2021 ACR Committee on Drugs and Contrast Media Preface 2 ACR Manual on Contrast Media 2021 ACR Committee on Drugs and Contrast Media © Copyright 2021 American College of Radiology ISBN: 978-1-55903-012-0 TABLE OF CONTENTS Topic Page 1. Preface 1 2. Version History 2 3. Introduction 4 4. Patient Selection and Preparation Strategies Before Contrast 5 Medium Administration 5. Fasting Prior to Intravascular Contrast Media Administration 14 6. Safe Injection of Contrast Media 15 7. Extravasation of Contrast Media 18 8. Allergic-Like And Physiologic Reactions to Intravascular 22 Iodinated Contrast Media 9. Contrast Media Warming 29 10. Contrast-Associated Acute Kidney Injury and Contrast 33 Induced Acute Kidney Injury in Adults 11. Metformin 45 12. Contrast Media in Children 48 13. Gastrointestinal (GI) Contrast Media in Adults: Indications and 57 Guidelines 14. ACR–ASNR Position Statement On the Use of Gadolinium 78 Contrast Agents 15. Adverse Reactions To Gadolinium-Based Contrast Media 79 16. Nephrogenic Systemic Fibrosis (NSF) 83 17. Ultrasound Contrast Media 92 18. Treatment of Contrast Reactions 95 19. Administration of Contrast Media to Pregnant or Potentially 97 Pregnant Patients 20. Administration of Contrast Media to Women Who are Breast- 101 Feeding Table 1 – Categories Of Acute Reactions 103 Table 2 – Treatment Of Acute Reactions To Contrast Media In 105 Children Table 3 – Management Of Acute Reactions To Contrast Media In 114 Adults Table 4 – Equipment For Contrast Reaction Kits In Radiology 122 Appendix A – Contrast Media Specifications 124 PREFACE This edition of the ACR Manual on Contrast Media replaces all earlier editions. -
2012-Nia-Clinical-Guidelines-Avmed
2012 NIA Standard Clincal Guidelines AvMed Guidelines for Clinical Review Determination Preamble NIA is committed to the philosophy of supporting safe and effective treatment for patients. The medical necessity criteria that follow are guidelines for the provision of diagnostic imaging. These criteria are designed to guide both providers and reviewers to the most appropriate diagnostic tests based on a patient‘s unique circumstances. In all cases, clinical judgment consistent with the standards of good medical practice will be used when applying the guidelines. Guideline determinations are made based on the information provided at the time of the request. It is expected that medical necessity decisions may change as new information is provided or based on unique aspects of the patient‘s condition. The treating clinician has final authority and responsibility for treatment decisions regarding the care of the patient. Guideline Development Process These medical necessity criteria were developed by NIA for the purpose of making clinical review determinations for requests for diagnostic tests. The developers of the criteria sets included representatives from the disciplines of radiology, internal medicine, nursing, and cardiology. They were developed following a literature search pertaining to established clinical guidelines and accepted diagnostic imaging practices. All inquiries should be directed to: National Imaging Associates, Inc. 6950 Columbia Gateway Drive Columbia, MD 21046 Attn: NIA Associate Chief Medical Officer 2011 National -
Review Article Contrast Media Viscosity Versus Osmolality in Kidney Injury: Lessons from Animal Studies
Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 358136, 15 pages http://dx.doi.org/10.1155/2014/358136 Review Article Contrast Media Viscosity versus Osmolality in Kidney Injury: Lessons from Animal Studies Erdmann Seeliger, Diana C. Lenhard, and Pontus B. Persson Institute of Physiology and Center for Cardiovascular Research, Charite-University´ Medicine Berlin, Campus Mitte, Hessische Straße 3-4, 10115 Berlin, Germany Correspondence should be addressed to Erdmann Seeliger; [email protected] Received 18 October 2013; Accepted 29 December 2013; Published 23 February 2014 Academic Editor: Richard Solomon Copyright © 2014 Erdmann Seeliger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Iodinated contrast media (CM) can induce acute kidney injury (AKI). CM share common iodine-related cytotoxic features but differ considerably with regard to osmolality and viscosity. Meta-analyses of clinical trials generally failed to reveal renal safety differences of modern CM with regard to these physicochemical properties. While most trials’ reliance on serum creatinine as outcome measure contributes to this lack of clinical evidence, it largely relies on the nature of prospective clinical trials: effective prophylaxis by ample hydration must be employed. In everyday life, patients are often not well hydrated; here we lack clinical data. However, preclinical studies that directly measured glomerular filtration rate, intrarenal perfusion and oxygenation, and various markers of AKI have shown that the viscosity of CM is of vast importance. In the renal tubules, CM become enriched, as water is reabsorbed, but CM are not. -
Cardiac PET and PET/CT Imaging
Cardiac PET and PET/CT Imaging M. F. Di Carli and M. J. Lipton, eds. New York, NY: Springer, 2007, 466 pages, $149 Cardiac PET and PET/CT Imaging is a comprehensive, therapy. Chapters 17, 18, and 21 are a must-read for clini- informative, up-to-date, state-of-the-art textbook on newer cal PET, whereas chapters 23 through 26 are informative cardiac imaging technologies and also provides valuable and useful regarding ongoing research and will help one insight into the future of cardiac imaging. The book has 6 keep up with future developments in this evolving field. parts; the first 5 parts or sections are subdivided into several Part 6 comprises multiple case presentations with good chapters that cover a wide spectrum of presently available illustrations and good explanations of image findings, and newer cardiac imaging modalities and future research goals. many are supported with additional relevant correlations or The first 3 parts progress in a systematic and orderly manner, follow-up findings. There are 18 diverse illustrative cases, starting with the basics of PET instrumentation, the princi- including normal study findings, misregistration and atten- ples of PET, PET tracers and radiopharmaceuticals, CT uation correction artifacts, incidental findings, abnormal cardiac anatomy, iodinated contrast agents, radiation safety, high-risk PET/CT scans, myocardial viability, integrated patient preparation, stress protocols, PET and PET/CT pro- myocardial perfusion with assessment of coronary artery tocols, myocardial PET interpretation, and PET quantifica- calcium score, left ventricular function assessment, and CT tion for assessing preclinical coronary artery disease. The coronary angiography. The writing is clear and understand- relative merits of coronary CT angiography and MRI along able; even difficult topics such as physics, radiochemistry, with integrated assessment of myocardial perfusion using and biochemistry are well presented and are understandable coronary angiography and PET/CT for diagnosing and man- with concentrated reading. -
When Is the Use of Contrast Media in Chest CT Indicated? Bruno Hochhegger1,2,3, Robson Rottenfusser4,5, Edson Marchiori6
J Bras Pneumol. 2017;43(5):400-400 http://dx.doi.org/10.1590/S1806-37562017000000179 LETTER TO THE EDITOR When is the use of contrast media in chest CT indicated? Bruno Hochhegger1,2,3, Robson Rottenfusser4,5, Edson Marchiori6 TO THE EDITOR: nodule, small or large airway disease, and lung cancer screening, do not require the use of any contrast media. It is undeniable that CT plays an important role in the diagnosis and treatment of various clinical conditions However, for the assessment of vascular disease, CT involving the chest wall, mediastinum, pleura, pulmonary requires the use of an i.v. contrast agent to delineate the arteries, and lung parenchyma. The need for enhancement vessel lumen (e.g., aneurysm, dissection, and vascular using i.v. contrast media depends on the specific clinical tumor invasion). Pulmonary embolic disease is the third indication.(1-3) The most common contrast agents used most common cause of acute cardiovascular disease.(3,5) with CT imaging are iodinated. Intravenous iodinated Chest CT angiography is the most common way to assess contrast agents are used for opacification of vascular for pulmonary embolic disease because, in addition to structures. The major families of contrast agents are being accurate, fast, and widely available, it can assess ionic and nonionic. Contrast agents can be further alternate pathologies in cases of undifferentiated chest classified as high- or low-osmolality agents on the basis pain. Typically, the use of CT in order to investigate of the iodine concentration. Most centers use nonionic vascular disease or pleural pathology may include contrast agents (generally low-osmolality agents) for non-contrast-enhanced images to identify hemorrhage, i.v. -
Corrected Coronary Opacification Decrease from Coronary Computed
ORIGINAL ARTICLE Corrected coronary opacification decrease from coronary computed tomography angiography: Validation with quantitative 13N-ammonia positron emission tomography Dominik C. Benz, MD,a Christoph Gra¨ni, MD,a Paola Ferro, MD,a Luis Neumeier,a Michael Messerli, MD,a Mathias Possner, MD,a Olivier F. Clerc, MD,a Catherine Gebhard, MD,a Oliver Gaemperli, MD,a Aju P. Pazhenkottil, MD,a Philipp A. Kaufmann, MD,a and Ronny R. Buechel, MDa a Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland Received Mar 25, 2017; accepted Jun 7, 2017 doi:10.1007/s12350-017-0980-2 Background. To assess the functional relevance of a coronary artery stenosis, corrected coronary opacification (CCO) decrease derived from coronary computed tomography angiography (CCTA) has been proposed. The present study aims at validating CCO decrease with quantitative 13N-ammonia positron emission tomography (PET) myocardial perfusion imaging (MPI). Methods and Results. This retrospective study consists of 39 patients who underwent hybrid CCTA/PET-MPI. From CCTA, attenuation in the coronary lumen was measured before and after a stenosis and corrected to the aorta to calculate CCO and its decrease. Relative flow reserve (RFR) was calculated by dividing the stress myocardial blood flow (MBF) of a vessel territory subtended by a stenotic coronary by the stress MBF of the reference territories without stenoses. RFR was abnormal in 11 vessel territories (27%). CCO decrease yielded a sensitivity, specificity, negative predictive value, positive predictive value, and accuracy for prediction of an abnormal RFR of 73%, 70%, 88%, 47%, and 70%, respectively. Conclusions. CCTA-derived CCO decrease has moderate diagnostic accuracy to predict an abnormal RFR in PET-MPI. -
American College of Radiology – Practice Parameter for Cardiac CT
The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields. The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized. Revised 2021 (Resolution 45)* ACR–NASCI–SPR PRACTICE PARAMETER FOR THE PERFORMANCE AND INTERPRETATION OF CARDIAC COMPUTED TOMOGRAPHY (CT) PREAMBLE This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care1. -
Iodinated Contrast Media and Their Adverse Reactions*
Iodinated Contrast Media and Their Adverse Reactions* Jagdish Singh and Aditya Daftary Teleradiology Solutions, Bangalore, India acteristics, including their chemical structure, osmolality, Cross-use of technology between nuclear medicine and radiol- iodine content, and ionization in solution (2,3). ogy technologists is expanding. The growth of PET/CT and the The parent molecule from which the contrast agents are increasing use of intravenous contrast agents during these pro- derived is benzene. This is a toxic water-insoluble liquid. cedures bring the nuclear medicine technologist into direct con- The carbon atoms on a benzene ring are numbered clock- tact with these agents and their associated complications. A basic understanding of the occurrence, risk factors, clinical fea- wise from 1 to 6. Benzoic acid is produced by introducing tures, and management of these procedures is of increasing an acid group at position 1 on the benzene ring. This acid importance to the nuclear medicine technologist. After reading group permits the formation of salts or amides, which this article, the technologist will be able to list the factors that influence water solubility. 2,4,6-triiodobenzoic acid is ob- increase the risk of contrast reactions; understand ways to min- tained by introducing iodine atoms at positions 2, 4, and 6 imize the occurrence of contrast reactions; and develop a plan to on the ring. Iodine is the element used in contrast media identify, treat, and manage the reactions effectively. as it possesses 3 important properties essential for the Key Words: iodinated contrast media; contrast reactions production of contrast media: high-contrast density, firm J Nucl Med Technol 2008; 36:69–74 binding to the benzene molecule, and low toxicity.