Environmental Systems Analysis Tools for Decision-Making
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Comprehensive and Absolute Corporate Sustainability Assessment and Enhanced Input Output Life Cycle Assessment
Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. ABSTRACT A COMPREHENSIVE AND ABSOLUTE CORPORATE SUSTAINABILITY ASSESSMENT AND ENHANCED INPUT OUTPUT LIFE CYCLE ASSESSMENT by Joseph M. Wright Stresses due to economic activity are threatening to exceed environmental and societal limits with the potential to jeopardize local communities and create global crises. This research establishes new methodologies and analytic techniques to comprehensively assess corporate sustainability and enhance the efficiency of estimating environmental and social impacts with Input Output Life Cycle Assessment (IOLCA). -
Life Cycle Assessment
Life cycle assessment http://lcinitiative.unep.fr/ http://lca.jrc.ec.europa.eu/lcainfohub/index.vm http://www.lbpgabi.uni-stuttgart.de/english/referenzen_e.html "Cradle-to-grave" redirects here. For other uses, see Cradle to the Grave (disambiguation). Recycling concepts Dematerialization Zero waste Waste hierarchy o Reduce o Reuse o Recycle Regiving Freeganism Dumpster diving Industrial ecology Simple living Barter Ecodesign Ethical consumerism Recyclable materials Plastic recycling Aluminium recycling Battery recycling Glass recycling Paper recycling Textile recycling Timber recycling Scrap e-waste Food waste This box: view • talk • edit A life cycle assessment (LCA, also known as life cycle analysis, ecobalance, and cradle-to- grave analysis) is the investigation and valuation of the environmental impacts of a given product or service caused or necessitated by its existence. Contents [hide] 1 Goals and Purpose of LCA 2 Four main phases o 2.1 Goal and scope o 2.2 Life cycle inventory o 2.3 Life cycle impact assessment o 2.4 Interpretation o 2.5 LCA uses and tools 3 Variants o 3.1 Cradle-to-grave o 3.2 Cradle-to-gate o 3.3 Cradle-to-Cradle o 3.4 Gate-to-Gate o 3.5 Well-to-wheel o 3.6 Economic Input-Output Life Cycle Assessment 4 Life cycle energy analysis o 4.1 Energy production o 4.2 LCEA Criticism 5 Critiques 6 See also 7 References 8 Further reading 9 External links [edit] Goals and Purpose of LCA The goal of LCA is to compare the full range of environmental and social damages assignable to products and services, to be able to choose the least burdensome one. -
A Quantitative Reliability, Maintainability and Supportability Approach for NASA's Second Generation Reusable Launch Vehicle
A Quantitative Reliability, Maintainability and Supportability Approach for NASA's Second Generation Reusable Launch Vehicle Fayssai M. Safie, Ph. D. Marshall Space Flight Center Huntsville, Alabama Tel: 256-544-5278 E-mail: Fayssal.Safie @ msfc.nasa.gov Charles Daniel, Ph.D. Marshall Space Flight Center Huntsville, Alabama Tel: 256-544-5278 E-mail: Charles.Daniel @msfc.nasa.gov Prince Kalia Raytheon ITSS Marshall Space Flight Center Huntsville, Alabama Tel: 256-544-6871 E-mail: Prince.Kalia @ msfc.nasa.gov ABSTRACT The United States National Aeronautics and Space Administration (NASA) is in the midst of a 10-year Second Generation Reusable Launch Vehicle (RLV) program to improve its space transportation capabilities for both cargo and crewed missions. The objectives of the program are to: significantly increase safety and reliability, reduce the cost of accessing low-earth orbit, attempt to leverage commercial launch capabilities, and provide a growth path for manned space exploration. The safety, reliability and life cycle cost of the next generation vehicles are major concerns, and NASA aims to achieve orders of magnitude improvement in these areas. To get these significant improvements, requires a rigorous process that addresses Reliability, Maintainability and Supportability (RMS) and safety through all the phases of the life cycle of the program. This paper discusses the RMS process being implemented for the Second Generation RLV program. 1.0 INTRODUCTION The 2nd Generation RLV program has in place quantitative Level-I RMS, and cost requirements [Ref 1] as shown in Table 1, a paradigm shift from the Space Shuttle program. This paradigm shift is generating a change in how space flight system design is approached. -
CISM160 Systems Analysis and Design Course Syllabus
ATLANTIC CAPE COMMUNITY COLLEGE ISAS DEPARTMENT COURSE SYLLABUS COURSE TITLE: CISM160 Systems Analysis and Design Instructor: Dr. Otto Hernandez Office: A-142 Phone: 609-343-4978 eMail: [email protected] REQUIRED TEXTBOOK AND MATERIALS: Essentials of Systems Analysis and Design. Author: Valacich; Edition: 6th; ISBN: 9780133546231 COURSE DESCRIPTION: Investigation of information systems with respect to their existence and identification and development of needed informational improvements within an organization. Recommended methods and procedures considering computer involvement are reviewed, designed and implemented using the case-study approach PRE-REQUISITE: one of the following: CISM135, CISM154 or CISM174 ADA STATEMENT: As per the Americans with Disabilities Act (ADA), reasonable accommodations can be provided to students who present current documentation (within five years) of a disability to Atlantic Cape Community College’s Center for Accessibility, located on the first floor of “J” Building in the Counseling and Support Services department (Mays Landing campus). Reasonable accommodations cannot be provided for a course until the student registers with the Center for Accessibility. For more information, please contact the Center for Accessibility via email at [email protected] call 609-343- 5680. LEARNING GOALS & OBJECTIVES: A) Understanding the Systems Development Environment 1. Define information systems analysis and design. 2. Define and discuss the modern approach to systems analysis and design. 3. Illustrate how systems development extends to different types of information systems and not just transaction processing systems. 4. Introduce the traditional information systems development life cycle, which serves as the basis for the organization of the material in this book. 5. Show that the life cycle is a flexible basis for systems analysis and design and that it can support many different tools and techniques, such as prototyping and JAD. -
The Foundations of the Environmental Rebound Effect and Its Contribution Towards a General Framework
Ecological Economics 125 (2016) 60–69 Contents lists available at ScienceDirect Ecological Economics journal homepage: www.elsevier.com/locate/ecolecon Methodological and Ideological Options The foundations of the environmental rebound effect and its contribution towards a general framework David Font Vivanco a,⁎, Will McDowall b, Jaume Freire-González c,RenéKempd, Ester van der Voet a a Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, The Netherlands b UCL Energy Institute, UCL, Central House, 14 Upper Woburn Place, London WC1H 0NN, United Kingdom c Environmental Change Institute, University of Oxford, Oxford OX1 3QY, United Kingdom d ICIS and UNU-MERIT, Maastricht University, 6200, MD, Maastricht, The Netherlands article info abstract Article history: The study of the so-called rebound effect has traditionally pertained to the domain of neoclassical energy eco- Received 8 September 2015 nomics. In recent years, other disciplines have applied this concept in the context of the environmental assess- Received in revised form 25 January 2016 ment of products and policies, and multiple perspectives have unfolded more or less in parallel. Among these, Accepted 21 February 2016 the environmental rebound effect (ERE) perspective, focused on efficiency changes and indicators that go beyond Available online 14 March 2016 energy to multiple environmental issues, has remained relatively unnoticed. This article thus asks the following questions: What are the foundational aspects of the ERE and how these relate to other perspectives? Are there Keywords: Rebound effect irreconcilable differences between perspectives? And what is the value of the ERE towards a general framework? Consumption We map the fundamental ideas behind the ERE and find that the lack of articulation has resulted in inconsistent Energy economics usage and lack of clarity. -
Environmental Indicators: Typology and Use in Reporting
EEA internal working paper Environmental Indicators: Typology and Use in Reporting Prepared by: Peder Gabrielsen and Peter Bosch European Environment Agency August 2003 Project Manager: Peter Bosch European Environment Agency 2 Contents 1. Introduction........................................................................................... 4 2. Why do we need environmental indicators?...................................... 5 3. Analytical framework ........................................................................... 6 3.1. A short history of DPSIR ............................................................... 6 3.2. The DPSIR framework in detail ..................................................... 7 3.3 Indicators and their relevance to the policy life cycle ............... 10 4. Indicator design – the EEA indicator typology ................................ 12 4.1. A short history of the EEA indicator typology........................... 12 4.2 Descriptive indicators (Type A).................................................... 12 4.3. Performance indicators (Type B) ................................................ 13 4.4. Efficiency indicators (Type C) ..................................................... 14 4.5. Policy-effectiveness indicators (Type D).................................... 15 4.6. Total Welfare indicators (Type E)................................................ 16 5. Indicator based reporting .................................................................. 17 References ............................................................................................. -
Systems Analysis – a New Paradigm and Decision Support Tools for the Water Framework Directive
Hydrol. Earth Syst. Sci., 12, 739–749, 2008 www.hydrol-earth-syst-sci.net/12/739/2008/ Hydrology and © Author(s) 2008. This work is distributed under Earth System the Creative Commons Attribution 3.0 License. Sciences Systems Analysis – a new paradigm and decision support tools for the water framework directive M. Bruen Centre for Water Resources Research, University College Dublin, Newstead, Belfield, Dublin 4, Ireland Received: 23 May 2007 – Published in Hydrol. Earth Syst. Sci. Discuss.: 12 June 2007 Revised: 3 March 2008 – Accepted: 7 April 2008 – Published: 15 May 2008 Abstract. In the early days of Systems Analysis the focus education and outreach influencing behaviour), economic in- was on providing tools for optimisation, modelling and sim- struments and legislation. Regardless of any scientific and ulation for use by experts. Now there is a recognition of the economic justification, it is unlikely that all proposed mea- need to develop and disseminate tools to assist in making de- sures or policies will be acceptable to all stakeholders so cisions, negotiating compromises and communicating pref- that considerable controversy and some planning and legal erences that can easily be used by stakeholders without the challenges can be expected. Consultation, negotiation, com- need for specialist training. The Water Framework Direc- promise and refinement of measures can be expected. Thus tive (WFD) requires public participation and thus provides it is imperative that all decisions on policy and measures a strong incentive for progress in this direction. This pa- be taken not only (i) on the basis of the best available sci- per places the new paradigm in the context of the classical entific and economic information but also (ii) be taken us- one and discusses some of the new approaches which can be ing an unbiased, independent and logical methodology and used in the implementation of the WFD. -
D15 – a Scientific Framework for Lca
Project no.037075 Project acronym: CALCAS Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability Instrument: Co-ordination Action Thematic Priority: Sustainable Development Global Change and Ecosystem D15 – A SCIENTIFIC FRAMEWORK FOR LCA Due date of deliverable: October 2008 Actual submission date: February 2009 Start date of the project: 1st September 2006 Duration: 30 months Organisation name of lead contractor for this deliverable Institute of Environmental Sciences, Leiden University (CML) Revision 1 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) CALCAS D15 1 A scientific framework for LCA Deliverable (D15) of work package 2 (WP2) CALCAS project Authors Reinout Heijungs, Gjalt Huppes, Jeroen Guinée, Institute of Environmental Sciences, Leiden University (CML) Date of approval: 31 May 2009 CALCAS D15 2 SUMMARY This document proposes a framework for New-LCA, as opposed to the established framework for ISO-LCA. Reasons for doing so are highlighted, but are evident when one looks ony superficially at the scientific literature on LCA of the last decade, covering subjects such as dynamic LCA, spatially differentiated LCA, the use of multicriteria techniques in LCA, the extension of -
Chapter 9 – Designing the Database
Systems Analysis and Design in a Changing World, seventh edition 9-1 Chapter 9 – Designing the Database Table of Contents Chapter Overview Learning Objectives Notes on Opening Case and EOC Cases Instructor's Notes (for each section) ◦ Key Terms ◦ Lecture notes ◦ Quick quizzes Classroom Activities Troubleshooting Tips Discussion Questions Chapter Overview Database management systems provide designers, programmers, and end users with sophisticated capabilities to store, retrieve, and manage data. Sharing and managing the vast amounts of data needed by a modern organization would not be possible without a database management system. In Chapter 4, students learned to construct conceptual data models and to develop entity-relationship diagrams (ERDs) for traditional analysis and domain model class diagrams for object-oriented (OO) analysis. To implement an information system, developers must transform a conceptual data model into a more detailed database model and implement that model in a database management system. In the first sections of this chapter students learn about relational database management systems, and how to convert a data model into a relational database schema. The database sections conclude with a discussion of database architectural issues such as single server databases versus distributed databases which are deployed across multiple servers and multiple sites. Many system interfaces are electronic transmissions or paper outputs to external agents. Therefore, system developers need to design and implement integrity controls and security controls to protect the system and its data. This chapter discusses techniques to provide the integrity controls to reduce errors, fraud, and misuse of system components. The last section of the chapter discusses security controls and explains the basic concepts of data protection, digital certificates, and secure transactions. -
Sustainability Assessment of Regional Water Resources Under the DPSIR
Journal of Hydrology 532 (2016) 140–148 Contents lists available at ScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol Sustainability assessment of regional water resources under the DPSIR framework ⇑ Shikun Sun a,b,1, Yubao Wang a,b,1, Jing Liu c, Huanjie Cai a,b, , Pute Wu b, Qingling Geng d, Lijun Xu e a College of Water Resource and Architectural Engineering, Northwest A&F University, Yangling 712100, China b Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China c College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China d Key Laboratory of Ecological Restoration in Hilly Area, Pingdingshan University, Pingdingshan 467000, China e Zhejiang A&F University, College of Engineering, Hangzhou 310000, China article info summary Article history: Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing pop- Received 28 July 2015 ulations combined with an increasing demand for water resources have led to water shortages world- Received in revised form 27 October 2015 wide. Current water management strategies may not be sustainable, and comprehensive action should Accepted 17 November 2015 be taken to minimize the water budget deficit. Sustainable water resources management is essential Available online 21 November 2015 because it ensures the integration of social, economic, and environmental issues into all stages of water This manuscript was handled by Geoff Syme, Editor-in-Chief, with the assistance of resources management. This paper establishes the indicators to evaluate the sustainability of water uti- V. -
Guidelines for Integrated Environmental Assessment of Urban Areas
Geo Citie Manual Guidelines for Integrated Environmental Assessment of Urban Areas www.unep.org United Nations Environment Programme P.O. Box 30552 Nairobi, 00100 Kenya Tel: (254 20) 7621234 Fax: (254 20) 7623927 E-mail: [email protected] web: www.unep.org EECCA Region UNITED NATIONS ENVIRONMENT PROGRAMME Geo Cities Manual Totally revised and updated edition customized for the Eastern European, Central Asian and Caucasus region based on the following sources: “GEO Cities Application Manual”, version 3 (UNEP, 2008) “GEO Cities Adaptation for the Arab region” (UNEP, 2009) “GEO resource book / Integrated Environmental Assessment Training manual” (UNEP, 2006) Prepared by Zoï Environment Network on behalf of UNEP-DEWA/GRID-Europe Editor: Claudia Heberlein, Zoï Environment Network Analysis and organisational support: Oksana Yakovenko, Nikita Efi mov, Alexandra Serebriakova Layout and Design : Carolyne Daniel Reviewers: Nickolai Denisov, Zurab Jincharadze, Zoï Environment Network, Geneva (Switzerland) Ron Witt, UNEP-DEWA/GRID-Europe, Geneva (Switzerland) Nora Mzanavadze, Central European University, Budapest (Hungary) Cristina Garzillo, ICLEI, Bonn (Germany) Experts in countries and cities: Dmitry Averin, Donetsk (Ukraine) Karine Danielian, Yerevan (Armenia) Ella Ivanova, Moscow (Russia) Fikret Jafarov, Baku (Azerbaijan) Pavel Makagonov, Huajuapan de León (Mexico) Anatol Shmurak, Kyiv (Ukraine) Lusine Taslakian, Yerevan (Armenia) Disclaimer: The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations Environment Programme concerning the legal status of any country, territory, city or area or of its authorities, or concerning delimitation of its frontiers or boundaries. Mention of a commercial company or product does not imply endorsement by the cooperating partners. -
DPSIR Schema and Numerical Models in Air Quality Management
Introduction DPSIR schema and numerical models in Air Quality management July 8th 2013 CEFAP Codroipo ARPA FVG – CRMA Agenzia Regionale per la Protezione dell’Ambiente del Friuli Venezia Giulia Centro Regionale di Modellistica Ambientale [email protected] Regional Agency for Enviromental Protection – Friuli Venezia Giulia Regional Center for Environmental Modelling Introduction: general What we are talking of... 2 Introduction: general We are talking of: ATMOSFERIC POLLUTION AMBIENT-AIR QUALITY (not of carbon dioxide and climatic changes; not of indoor air pollution, nor of air quality in working environments; etc.) In particular... of using mathematical models to describe and predict these phenomena What’s the goal? Protecting health, ecosystems and economy 3 Introduction: general ... using mathematical models to describe and predict ATMOSFERIC POLLUTION Why should YOU be particularly interested in it? Because ARPA requires it in Environmental Impact Assessment Studies! 4 Introduction: general DPSIR framework 5 Introduction: DPSIR D.P.S.I.R. schema to place the following elements and relations between them: 1. pollution sources (emissions) 2. metheorology 3. quality of the air we breathe 4. its effects on health, ecosystems and economy 5. Legislation in this matter and authorization processes DPSIR is a “conceptual” and “qualitative” schema: it becomes “quantitative” by means of mathematical models 6 DPSIR: schema 7 in Air Quality terms... DRIVING FORCES: "indirect” causes of atmospheric pollution Es: 1. ~1,500,000 people in our Region 2. morphology, meteorology and climate of Po valley 3. mean per capita energy requirement 4. quantity of raw material used by a factory ... 8 in Air Quality terms... PRESSURES: “direct” causes of atmospheric pollution (emissions) Es: 1.