Chromosome 1 (Human Genome/Inkae) A

Total Page:16

File Type:pdf, Size:1020Kb

Chromosome 1 (Human Genome/Inkae) A Proc. Nati. Acad. Sci. USA Vol. 89, pp. 4598-4602, May 1992 Medical Sciences Integration of gene maps: Chromosome 1 (human genome/inkae) A. COLLINS*, B. J. KEATSt, N. DRACOPOLIt, D. C. SHIELDS*, AND N. E. MORTON* *CRC Research Group in Genetic Epidemiology, Department of Child Health, University of Southampton, Southampton, S09 4XY, United Kingdom; tDepartment of Biometry and Genetics, Louisiana State University Center, 1901 Perdido Street, New Orleans, LA 70112; and tCenter for Cancer Research, Massachusetts Institute of Technology, 40 Ames Street, Cambridge, MA 02139 Contributed by N. E. Morton, February 10, 1992 ABSTRACT A composite map of 177 locI has been con- standard lod tables extracted from the literature. Multiple structed in two steps. The first combined pairwise logarithm- pairwise analysis of these data was performed by the MAP90 of-odds scores on 127 loci Into a comprehensive genetic map. computer program (6), which can estimate an errorfrequency Then this map was projected onto the physical map through e (7) and a mapping parameter p such that map distance w is cytogenetic assignments, and the small amount ofphysical data a function of 0, e and p (8). It also includes a bootstrap to was interpolated for an additional 50 loci each of which had optimize order and a stepwise elimination of weakly sup- been assigned to an interval of less than 10 megabases. The ported loci to identify a conservative set of reliably ordered resulting composite map is on the physical scale with a reso- (framework) markers. The genetic map was combined with lution of 1.5 megabases. In the future these methods may be other evidence from the literature and the on-line genome used to incorporate locations from linkage, contigs, radiation data base (GDB) (9) by using the location data base program hybrids, restriction fragments, and somatic cell maps. Dense, (ldb) (10). This integrates these partial maps into a composite reliable, and well-documented maps are essential for long- map that conveys both order and physical location. A sum- range sequencing and to local and clone disease genes. mary map comprises the ordered loci and composite location together with the genetic map, cytogenetic and otherphysical Chromosome 1 is the largest in man and it provided the first data, and any homologies in the mouse (see Table 3). Locus autosomal linkage and physical maps (1) and radiation hybrid symbols were obtained from GDB (9) and Human Gene map (2). The Centre d'Etude du Polymorphisme Humain Mapping 10.5 (11). (CEPH) consortium map recognized 58 reliably ordered framework loci and an additional 43 locally unordered loci RESULTS whose regional assignment was indicated (3). A number of TMe Framework Map. A map ofloci for which order is well loci mapped in other samples are given in the LODSOURCE supported by linkage is termed a framework map (4). Such a data base (4). They include blood groups, isozymes, and map is useful for interval location ofdisease loci. A subset of diseases not represented in the CEPH sample, as well as such loci selected through a gene mapping committee as additional data on other markers. Multipoint analysis neglect- suitable for low-resolution linkage studies are termed refer- ing interference and typing errors requires assembly of raw ence loci. Twenty-one loci have been designated as reference data from hundreds of reports over nearly 40 years, which is markers for chromosome 1 (12). They all have heterozygos- clearly not feasible. Here we use multiple pairwise analysis ities >0.50, have been placed in the genetic map by at least of sex-specific logarithm-of-odds (lod) scores with allowance two independent studies, and have been physically mapped for interference and typing errors to produce a genetic map on hybrid panels or by in situ hybridization. They are highly of 127 loci, which is then integrated with other data into a informative and span nearly the whole chromosome. Such composite map of 177 loci, which conveys physical location. gold-star loci have not, however, been useful in other orga- nisms, because high-resolution mapping requires dense MATERIAL AND METHODS markers (10) and technical advances replace one type of hypervariability by another (13). Local support is measured The LODSOURCE data base accumulates data as standard lod by the lod ofthe best order against the most likely interchange tables for males, females, and unspecified sex. Since the with an adjacent locus, and interval support is measured by object of linkage analysis in man is to produce sex-specific the lod of the best order against the most likely insertion in maps agreeing in order but not distance, we factored bivariate another interval. Therefore interval support is always less lod scores by sex, Z(Om, Of) = Z(Om) + Z(Of), where Z(O) = than or equal to local support. Keats et al. (4) suggested that log10 [P(O)/P('/2)]. Here Z denotes a lod, 0 a recombination a framework map by multipoint analysis should have interval fraction, and P(O) the probability ofa sample as a function of support (and therefore local support) of at least 3, corre- 0, and m and f are males and females, respectively. Lod sponding to odds of 1000:1, which by a posterior probability scores are additive over samples and may be summarized for argument is required to assert significant linkage for two each pair of loci by no more than six numbers: Om, ±m, Of, random markers. They recognized that this argument does ou, Zu, where the caret indicates a maximum likelihood not apply to two markers known to be on the same chromo- estimate and u denotes unspecified sex. Bivariate lod scores some, but they expressed the hope that an extreme signifi- were calculated for CEPH data (3) by the CRIMAP program (P. cance level could compensate for the sensitivity ofmultipoint Green, personal communication) and factored into male and analysis to typing errors. Subsequently, it has been shown female entries by the LODS program (5). All sources except that multiple pairwise analysis is less sensitive to typing CEPH were taken from the LODSOURCE data base, which errors, especially with error filtration as performed by the derives maximum likelihood estimates by interpolation in MAP9o program (7). Accordingly we have used a local support The publication costs ofthis article were defrayed in part by page charge Abbreviations: CEPH, Centre d'Etude du Polymorphisme Humain; payment. This article must therefore be hereby marked "advertisement" GDB, genome data base; lod, logarithm ofodds; cM, centimorgan(s); in accordance with 18 U.S.C. §1734 solely to indicate this fact. Mb, megabase(s). 4598 Downloaded by guest on September 26, 2021 Medical Sciences: Collins et al. Proc. Natl. Acad. Sci. USA 89 (1992) 4599 of at least 1 to define framework loci by multiple pairwise Table 2. Estimates of framework parameters analysis. Framework loci may also be defined on physical Map length, cM evidence (14). To construct a comprehensive genetic map the CEPH consortium map of chromosome 1 was used to provide Arm p Male Female K an initial framework (3); AMY2B, SPTAI, and D1S8 were p 0.009 0.236 117.3 210.1 1.79 excluded because, at this stage, the MAP90 program did not q 0.007 0.253 111.7 164.5 1.47 support the consortium final order for these loci. The re- p + q 0.008 0.309 233.7 390.8 1.67 maining loci were inserted at their most likely locations in this E, Error frequency; p, mapping parameter; K, ratio ofgenetic map map of 55 loci. A final conservative framework map with a lengths in females and males. minimum local support of 1 with the inclusion of the 21 reference loci was obtained by using an algorithm for step- from chiasmata, which is 201 cM from arms with a terminal wise elimination of loci with the lowest local support. This chiasma (16) and 194 cM for all arms (17). It seems likely that process gave a map of 49 loci from DIZ2 to D1568 that is in conservative enumeration of chiasmata omits a fraction that close agreement with the consortium map except in regions may be as great as 16%, and therefore the distribution of where there is a large gap between reference loci. For chiasmata along the unbanded meiotic chromosome should example, in the 50 centimorgans (cM) that separate D1561 be taken as only a rough indication of the genetic map. It and DIS81 on the male map our algorithm chooses the highly remains true that a male map much in excess of the chiasma supported loci D1565, DIS84, and SNRPE in preference to map raises a suspicion of inadequate allowance for typing F13B and DS5S3. Clearly, gold-star loci are not unique and errors or interference. are subject to continual revision by new evidence and/or The Composite Map. Chromosome 1 has poor physical consensus. information, with few contigs, no long-range restriction frag- Since order in a comprehensive genetic map is locally ment map, no standard somatic cell panel defining regions, unreliable, framework loci should provide better estimates of and no radiation hybrid map since the pioneer work on a few error frequency, mapping parameter, and sex-specific arm loci (2). However, cytogenetic assignment provides coarse lengths. From replicate typing the error frequency has been localization that can be used to project the genetic map into estimated as 0.006 (54 discordancies among 4205 duplicate the physical map. Therefore this fragmentary evidence may samples) (3). The MAP90 program agrees closely, with an error be integrated into a composite map that will converge to a frequency of 0.008 0.001 (Table 1).
Recommended publications
  • Factor XIII and Fibrin Clot Properties in Acute Venous Thromboembolism
    International Journal of Molecular Sciences Review Factor XIII and Fibrin Clot Properties in Acute Venous Thromboembolism Michał Z ˛abczyk 1,2 , Joanna Natorska 1,2 and Anetta Undas 1,2,* 1 John Paul II Hospital, 31-202 Kraków, Poland; [email protected] (M.Z.); [email protected] (J.N.) 2 Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland * Correspondence: [email protected]; Tel.: +48-12-614-30-04; Fax: +48-12-614-21-20 Abstract: Coagulation factor XIII (FXIII) is converted by thrombin into its active form, FXIIIa, which crosslinks fibrin fibers, rendering clots more stable and resistant to degradation. FXIII affects fibrin clot structure and function leading to a more prothrombotic phenotype with denser networks, characterizing patients at risk of venous thromboembolism (VTE). Mechanisms regulating FXIII activation and its impact on fibrin structure in patients with acute VTE encompassing pulmonary embolism (PE) or deep vein thrombosis (DVT) are poorly elucidated. Reduced circulating FXIII levels in acute PE were reported over 20 years ago. Similar observations indicating decreased FXIII plasma activity and antigen levels have been made in acute PE and DVT with their subsequent increase after several weeks since the index event. Plasma fibrin clot proteome analysis confirms that clot-bound FXIII amounts associated with plasma FXIII activity are decreased in acute VTE. Reduced FXIII activity has been associated with impaired clot permeability and hypofibrinolysis in acute PE. The current review presents available studies on the role of FXIII in the modulation of fibrin clot properties during acute PE or DVT and following these events.
    [Show full text]
  • Structural Forms of the Human Amylase Locus and Their Relationships to Snps, Haplotypes, and Obesity
    Structural Forms of the Human Amylase Locus and Their Relationships to SNPs, Haplotypes, and Obesity The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Usher, Christina Leigh. 2015. Structural Forms of the Human Amylase Locus and Their Relationships to SNPs, Haplotypes, and Obesity. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467224 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Structural forms of the human amylase locus and their relationships to SNPs, haplotypes, and obesity A dissertation presented by Christina Leigh Usher to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Genetics and Genomics Harvard University Cambridge, Massachusetts March 2015 © 2015 Christina Leigh Usher All rights reserved. Dissertation Advisor: Professor Steven McCarroll Christina Leigh Usher Structural forms of the human amylase locus and their relationships to SNPs, haplotypes, and obesity Abstract Hundreds of human genes reside in structurally complex loci that elude molecular analysis and assessment in genome-wide association studies (GWAS). One such locus contains the three different amylase genes (AMY2B, AMY2A, and AMY1) responsible for digesting starch into sugar. The copy number of AMY1 is reported to be the genome’s largest influence on obesity, yet has gone undetected in GWAS.
    [Show full text]
  • Characterization of Genomic Copy Number Variation in Mus Musculus Associated with the Germline of Inbred and Wild Mouse Populations, Normal Development, and Cancer
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-18-2019 2:00 PM Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer Maja Milojevic The University of Western Ontario Supervisor Hill, Kathleen A. The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Maja Milojevic 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Genetics and Genomics Commons Recommended Citation Milojevic, Maja, "Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer" (2019). Electronic Thesis and Dissertation Repository. 6146. https://ir.lib.uwo.ca/etd/6146 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Mus musculus is a human commensal species and an important model of human development and disease with a need for approaches to determine the contribution of copy number variants (CNVs) to genetic variation in laboratory and wild mice, and arising with normal mouse development and disease. Here, the Mouse Diversity Genotyping array (MDGA)-approach to CNV detection is developed to characterize CNV differences between laboratory and wild mice, between multiple normal tissues of the same mouse, and between primary mammary gland tumours and metastatic lung tissue.
    [Show full text]
  • Factor XIII Deficiency
    Haemophilia (2008), 14, 1190–1200 DOI: 10.1111/j.1365-2516.2008.01857.x ORIGINAL ARTICLE Factor XIII deficiency L. HSIEH and D. NUGENT Division of Hematology, ChildrenÕs Hospital of Orange County, Orange, CA, USA Summary. Inherited factor XIII (FXIII) deficiency is been more than 60 FXIII mutations identified in the a rare bleeding disorder that can present with current literature. In addition, single nucleotide umbilical bleeding during the neonatal period, polymorphisms have been described, some of which delayed soft tissue bruising, mucosal bleeding and have been shown to affect FXIII activity, contribut- life-threatening intracranial haemorrhage. FXIII defi- ing further to the heterogeneity in patient presenta- ciency has also been associated with poor wound tion and severity of clinical symptoms. Although healing and recurrent miscarriages. FXIII plays an there is a lifelong risk of bleeding, the prognosis is integral role in haemostasis by catalysing the cross- excellent when current prophylactic treatment is linking of fibrin, platelet membrane and matrix available using cryoprecipitate or plasma-derived proteins throughout thrombus formation, thus sta- FXIII concentrate. bilizing the blood clot. The molecular basis of FXIII deficiency is characterized by a high degree of Keywords: bleeding disorders, coagulation, factor heterogeneity, which contributes to the different XIII, factor XIII deficiency, fibrin stabilizing factor, clinical manifestations of the disease. There have protransglutaminase clear that intracellular FXIII, especially in platelet Introduction and vascular bed may play an equally important role Prior to delving into the clinical and biochemical in haemostasis. details which characterize this fascinating clotting In plasma, FXIII circulates as a pro-transglutamin- factor, it is worth taking a moment to consider this ase (FXIII-A2B2) composed of two catalytic A important fact: factor XIII (FXIII) is not just another subunits (FXIII-A2) and two non-catalytic B subunits plasma protein in the clotting cascade.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Improved Detection of Gene Fusions by Applying Statistical Methods Reveals New Oncogenic RNA Cancer Drivers
    bioRxiv preprint doi: https://doi.org/10.1101/659078; this version posted June 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Improved detection of gene fusions by applying statistical methods reveals new oncogenic RNA cancer drivers Roozbeh Dehghannasiri1, Donald Eric Freeman1,2, Milos Jordanski3, Gillian L. Hsieh1, Ana Damljanovic4, Erik Lehnert4, Julia Salzman1,2,5* Author affiliation 1Department of Biochemistry, Stanford University, Stanford, CA 94305 2Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 3Department of Computer Science, University of Belgrade, Belgrade, Serbia 4Seven Bridges Genomics, Cambridge, MA 02142 5Stanford Cancer Institute, Stanford, CA 94305 *Corresponding author [email protected] Short Abstract: The extent to which gene fusions function as drivers of cancer remains a critical open question. Current algorithms do not sufficiently identify false-positive fusions arising during library preparation, sequencing, and alignment. Here, we introduce a new algorithm, DEEPEST, that uses statistical modeling to minimize false-positives while increasing the sensitivity of fusion detection. In 9,946 tumor RNA-sequencing datasets from The Cancer Genome Atlas (TCGA) across 33 tumor types, DEEPEST identifies 31,007 fusions, 30% more than identified by other methods, while calling ten-fold fewer false-positive fusions in non-transformed human tissues. We leverage the increased precision of DEEPEST to discover new cancer biology. For example, 888 new candidate oncogenes are identified based on over-representation in DEEPEST-Fusion calls, and 1,078 previously unreported fusions involving long intergenic noncoding RNAs partners, demonstrating a previously unappreciated prevalence and potential for function.
    [Show full text]
  • Characterization of a Novel Large Deletion Caused by Double-Stranded Breaks in 6-Bp Microhomologous Sequences of Intron 11 and 12 of the F13A1 Gene
    OPEN Citation: Human Genome Variation (2016) 3, 15059; doi:10.1038/hgv.2015.59 Official journal of the Japan Society of Human Genetics 2054-345X/16 www.nature.com/hgv ARTICLE Characterization of a novel large deletion caused by double-stranded breaks in 6-bp microhomologous sequences of intron 11 and 12 of the F13A1 gene Anne Thomas1,3, Vytautas Ivaškevičius1,3, Christophe Zawadzki2, Jenny Goudemand2, Arijit Biswas1,3 and Johannes Oldenburg1 Coagulation Factor XIII is a heterotetrameric protransglutaminase which stabilizes preformed fibrin clots by covalent crosslinking them. Inherited homozygous or compound heterozygous deficiency of coagulation Factor XIII (FXIII) is a rare severe bleeding disorder affecting 1 in 2 million individuals. Most of the patients with inherited FXIII deficiency described in the literature carry F13A1 gene point mutations (missense, nonsense and splice site defects), whereas large deletions (40.5 kb in size) are underrepresented. In this article we report for the first time the complete characterization of a novel homozygous F13A1 large deletion covering the entire exon 12 in a young patient with a severe FXIII-deficient phenotype from France. Using primer walking on genomic DNA we have identified the deletion breakpoints in the region between g.6.143,016–g.6.148,901 caused by small 6-bp microhomologies at the 5´ and 3´ breakpoints. Parents of the patient were heterozygous carriers. Identification of this large deletion offers the possibility of prenatal diagnosis for the mother in this family who is heterozygous for this deletion. Human Genome Variation (2016) 3, 15059; doi:10.1038/hgv.2015.59; published online 11 February 2016 INTRODUCTION detected in the F13B gene.
    [Show full text]
  • Supplementary Note 1 - Copy Number Estimation with Fastcn
    1 Supplementary Note 1 - Copy number estimation with fastCN 1.1 Introduction Multiple approaches that utilize read depth to identify regions of copy number variation have been developed. One successful set of approaches utilize the mrFAST and mrsFAST aligners, tools which efficiently return all matching locations for short sequencing reads within a specified edit distance. These tools have been used to analyze CNV patterns in multiple studies of humans and non-human primates [1–4]. However, this estimation required separate steps including mapping, BAM file sorting based on location, and read pileup followed by GC corrections, requiring the storage and manipulation of several large files. Since the total time for disk I/O and the use of multiple intermediate files is a serious bottleneck for large scale analyses, we developed fastCN to efficiently estimate genome copy number from short read data. This program utilizes the data output from the short read mapper mrsFAST [5], and reports per-bp read depth in an efficient compressed binary format. The fastCN software package is available on GitHub (https://github.com/KiddLab/fastCN). 1.2 Implementation and optimization The fastCN core pipeline consists of two major applications. The first, GC_control_gen, generates a control region file for the next stage of the pipeline based on (1) the reference genome and user supplied files indicating (2) regions of the genome assumed to not be copy number variable and (3) regions of the genome which have been masked prior to read mapping. To avoid excessive depth pile ups due to repetitive regions, we utilize a version of the genome reference where all elements defined by RepeatMasker, elements defined by tandem repeat finder (TRF), and 50-mers with at least 20 genome matches within an edit distance of two are masked to ‘N’ prior to short read mapping.
    [Show full text]
  • The Wayward Dog: Is the Australian Native Dog Or Dingo a Distinct Species?
    Zootaxa 4317 (2): 201–224 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4317.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:3CD420BC-2AED-4166-85F9-CCA0E4403271 The Wayward Dog: Is the Australian native dog or Dingo a distinct species? STEPHEN M. JACKSON1,2,3,9, COLIN P. GROVES4, PETER J.S. FLEMING5,6, KEN P. APLIN3, MARK D.B. ELDRIDGE7, ANTONIO GONZALEZ4 & KRISTOFER M. HELGEN8 1Animal Biosecurity & Food Safety, NSW Department of Primary Industries, Orange, New South Wales 2800, Australia. 2School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052. 3Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA. E-mail: [email protected] 4School of Archaeology & Anthropology, Australian National University, Canberra, ACT 0200, Australia. E: [email protected]; [email protected] 5Vertebrate Pest Research Unit, Biosecurity NSW, NSW Department of Primary Industries, Orange, New South Wales 2800, Australia. E-mail: [email protected] 6 School of Environmental & Rural Science, University of New England, Armidale, NSW 2351, Australia. 7Australian Museum Research Institute, Australian Museum, 1 William St. Sydney, NSW 2010, Australia. E-mail: [email protected] 8School of Biological Sciences, Environment Institute, and ARC (Australian Research Council) Centre for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia. E-mail: [email protected] 9Corresponding author. E-mail: [email protected] Abstract The taxonomic identity and status of the Australian Dingo has been unsettled and controversial since its initial description in 1792.
    [Show full text]
  • Mus Musculus) Was Subject to Repeated Introgression Including the Rescue of a Pseudogene Miriam Linnenbrink†, Kristian K
    Linnenbrink et al. BMC Evolutionary Biology (2020) 20:56 https://doi.org/10.1186/s12862-020-01624-5 RESEARCH ARTICLE Open Access The amylase gene cluster in house mice (Mus musculus) was subject to repeated introgression including the rescue of a pseudogene Miriam Linnenbrink†, Kristian K. Ullrich†, Ellen McConnell and Diethard Tautz* Abstract Background: Amylase gene clusters have been implicated in adaptive copy number changes in response to the amount of starch in the diet of humans and mammals. However, this interpretation has been questioned for humans and for mammals there is a paucity of information from natural populations. Results: Using optical mapping and genome read information, we show here that the amylase cluster in natural house mouse populations is indeed copy-number variable for Amy2b paralogous gene copies (called Amy2a1 - Amy2a5), but a direct connection to starch diet is not evident. However, we find that the amylase cluster was subject to introgression of haplotypes between Mus musculus sub-species. A very recent introgression can be traced in the Western European populations and this leads also to the rescue of an Amy2b pseudogene. Some populations and inbred lines derived from the Western house mouse (Mus musculus domesticus) harbor a copy of the pancreatic amylase (Amy2b) with a stop codon in the first exon, making it non-functional. But populations in France harbor a haplotype introgressed from the Eastern house mouse (M. m. musculus) with an intact reading frame. Detailed analysis of phylogenetic patterns along the amylase cluster suggest an additional history of previous introgressions. Conclusions: Our results show that the amylase gene cluster is a hotspot of introgression in the mouse genome, making it an evolutionary active region beyond the previously observed copy number changes.
    [Show full text]
  • Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis
    Getting “Under the Skin”: Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis by Kristen Monét Brown A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Epidemiological Science) in the University of Michigan 2017 Doctoral Committee: Professor Ana V. Diez-Roux, Co-Chair, Drexel University Professor Sharon R. Kardia, Co-Chair Professor Bhramar Mukherjee Assistant Professor Belinda Needham Assistant Professor Jennifer A. Smith © Kristen Monét Brown, 2017 [email protected] ORCID iD: 0000-0002-9955-0568 Dedication I dedicate this dissertation to my grandmother, Gertrude Delores Hampton. Nanny, no one wanted to see me become “Dr. Brown” more than you. I know that you are standing over the bannister of heaven smiling and beaming with pride. I love you more than my words could ever fully express. ii Acknowledgements First, I give honor to God, who is the head of my life. Truly, without Him, none of this would be possible. Countless times throughout this doctoral journey I have relied my favorite scripture, “And we know that all things work together for good, to them that love God, to them who are called according to His purpose (Romans 8:28).” Secondly, I acknowledge my parents, James and Marilyn Brown. From an early age, you two instilled in me the value of education and have been my biggest cheerleaders throughout my entire life. I thank you for your unconditional love, encouragement, sacrifices, and support. I would not be here today without you. I truly thank God that out of the all of the people in the world that He could have chosen to be my parents, that He chose the two of you.
    [Show full text]