Optical Coating Capabilities

Total Page:16

File Type:pdf, Size:1020Kb

Optical Coating Capabilities 6/7/2021 Optical Coating Capabilities | Optical Filter Coatings | Andover ISO 9001 ­ AS 9100 ­ ITAR Toll Free (US): +1 (888) 893­9992 International: +01 (603) 893­ 6888 LOGIN CHECKOUT Search CONTROL THE LIGHT, SEE YOUR WORLD Standard & Custom Optical Filters and Coatings Home / Optical Filters & Assemblies | Coating Capabilities | Andover / Optical Coating Capabilities | Optical Filter Coatings | Andover OPTICAL COATING CAPABILITIES What is an Optical Filter Coating? An optical coating is one or more thin layers of material deposited on an optical component such as a lens or mirror, which alters the way in which the optic reflects and transmits light. One type of optical coating is an antireflection coating, which reduces unwanted reflections from surfaces, and is commonly used on spectacle and photographic lenses. Another type is the high­reflector coating which can be used to produce mirrors that reflect greater than 99.99% of the light which falls on them. More complex optical coatings exhibit high reflection over some range of wavelengths, and anti­reflection over another range, allowing the production of dichroic thin­film optical filters. Technologies Andover has a variety of optical coating technologies at its disposal, providing customers with solutions tailored to their specific applications. Technologies include: Magnetron Sputtering Ion­Assisted E­Beam deposition Resistance Evaporation Hybrid Technologies We can design and manufacture coatings to meet your most demanding requirements. Range of Wavelengths from 193nm to 14 microns, on a wide variety of substrate materials including BK­7, filter glass, borosilicate glass, Silicon, Germanium, Sapphire, Fused Silica, Calcium Fluoride, Zinc Selenide, Zinc Sulfide, and more. All Andover chambers are internally custom­built, computer­controlled, and use the latest deposition techniques. Ion beam compaction yields high­density coatings, reducing environmental effects and eliminating voids in the coating, which also increases hardness. Materials We have an extensive back­catalog of optical coating formulas for substrate materials from optical glass and crystalline materials to bare and nickel­plated metals. Our thin­film coatings employ oxide and fluoride dielectric Contact Us multilayer coating materials including MgF, SiO2, TaO5, and HfO2. We also offer enhanced and protected https://www.andovercorp.com/capabilities/optical-coating/ 1/3 6/7/2021 Optical Coating Capabilities | Optical Filter Coatings | Andover metallic coatings of gold, silver, and aluminum. Our current coating line­up covers a nominal wavelength range from 193nm ­ 14µm. Coating Types Anti­reflective coatings High reflective coatings Partially reflective coatings Polarizing coatings Bandpass coatings for the UV, visible, and infrared Beam splitter coatings for the UV, visible, and infrared Neutral density filters Protective and enhanced aluminum, silver, and gold coatings COATING We have the unique ability to provide a diverse range of coatings spanning a broad wavelength range on a wide variety of materials. We produce coatings for a multitude of applications, ranging from environmental monitoring to space­based astronomy. Our AS9100 certification ensures compliance with aerospace as well as military standards. Variety of coating technologies to suit any need Wavelengths from 193nm to 14μm Custom coatings on a wide variety of substrates Dichroic Filter Coatings Andover designs and produces custom dichroic filter coatings for a variety of applications. Our in­house engineers can design exotic coatings to meet very stringent spectral and environmental requirements. As with all of our coatings, they can be applied to a wide variety of materials, in a myriad of shapes and sizes. A hot mirror is a dichroic filter that reflects 90% of near­infrared (NIR) and infrared (IR) light while transmitting up to 80% of the visible light. Hot mirrors transmit shorter wavelengths and reflect infrared energy. Hot mirrors can be specified for an angle of incidence ranging from aero to 45 degrees. They are made by applying a multi­layer dielectric coating to the glass substrate such as borosilicate glass. A cold mirror is a dichroic filter that reflects up to 90% of the visible light spectrum while allowing transmission of infrared wavelengths IR and near IR of up to 80%. Cold mirrors reflect the shorter wavelengths and transmit the heat (infrared). A cold mirror can be specified for an angle of incidence ranging from zero to 45 degrees. They are made by applying a multi­layer dielectric coating to the glass substrate such as borosilicate glass. Anti­Reflective AR Coatings Andover produces hard oxide AR coatings from 193nm to 14μm. We routinely coat customer­supplied substrate material in all shapes and sizes: lenses, prisms, flats, domes, etc. We can coat a wide variety of materials, ranging from typical optical glass to exotic materials such as Calcium Fluoride, Zinc Sulfide, and Zinc Selenide. The hard coatings not only reduce reflections to <0.1% at angles up to 50°, but also help protect optical surfaces, as the coating is more durable than the uncoated substrate. Neutral Density Filters Andover is a leader in flat response neutral density filters in the UV to near­infrared (250nm­2000nm) and far­ infrared (2000­14000nm). These coatings are hard and pinhole­free. Our ND Filters exhibit industry­leading spectral neutrality over a broad wavelength range, with optical densities up to 4.0. (We can deposit A/R coating https://www.andovercorp.com/capabilities/optical-coating/ 2/3 6/7/2021 Optical Coating Capabilities | Optical Filter Coatings | Andover on the uncoated surface for a nominal fee.) Andover's absorptive ND filters are unique in that they are AR coated to reduce surface reflections. This enables them to be stacked without concern about losses and artifacts due to multiple reflections. Bandpass Filters We produce bandpass filters over a much broader range than any other coating firm, from 193nm to 14μm in wavelength. Bandwidths range from very wide, (> 10%) to extremely narrow, (< 0.02%). We can produce semi­ custom bandpass filters with short lead times. We also have over 1,500 standard filters. Specialized Coatings With our computer­controlled systems, we can quickly produce a variety of high­quality coatings in sizes up to 300mm with excellent repeatability using any process from resistance evaporation to magnetron sputtering. We also offer Ion­assisted e­beam deposition and Hybrid technologies. Transmittance depends considerably on the light wavelength range: different kind of glasses and coatings helps to improve performance in particular spectral regions, e.g. UV or IR. Generally, good transmission in the UV region is more difficult to achieve. Contact a technical sales representative for more information. CALL US TODAY AND ASK ABOUT THE ANDOVER ADVANTAGE 1­888­893­9992 ISO 9001 and AS 9100 Certified. ITAR Registered. CALL US TODAY AND ASK ABOUT THE ANDOVER ADVANTAGE 1­888­893­9992 Andover Corporation 4 Commercial Drive Salem, NH 03079­2800 USA Toll Free (US): +1 (888) 893­ 9992 International: +01 (603) 893­ 6888 Fax: +1 (603) 893­6508 e­mail: [email protected] © Andover Corporation ­ All Rights Reserved https://www.andovercorp.com/capabilities/optical-coating/ 3/3.
Recommended publications
  • Active Laser Radar for High-Performance Measurements
    Proceedings of the 1998 IEEE International Conference on Robotics& Automation Leuven, Belgium o May 1998 ACTIVE LASER RADAR , FOR HIGH-PERFORMANCE MEASUREMENTS John Hancocka, Dirk Langern, Martial Heberta, Ryan Sullivanb, Darin Ingimarsonb, Eric Hoffmanb, Markus Mettenleiterc, Christoph Froehlichc a: The Robotics Institute, Carnegie Mellon Univ. (CMU), Pittsburgh, PA 15213, USA b: K2T, Inc. One South Linden St., Duquesne, PA 15110, USA c: Zoner + Froehlich (Z+F), Simoniusstr. 22, D-88239 Wangen, Germany autonomous vehicle navigation and obstacle detection, ABSTRACT: Laser scanners, or laser radars (ladar), quarry mapping, landfill surveying, and hazardous en- have been used for a number of years for mobile robot vironment surveying. The current state of the art for non navigation and inspection tasks. Although previous scan- tactile measurements is unable to meet the demand of ners were sufficient for low speed applications, they often many of these applications. Typical systems are slow and did not have the range or angular resolution necessary for unable to measure with an unobstructed field of view. mapping at the long distances. Many also did not provide an ample field of view with high accuracy and high We have created a laser radar that overcomes these limita- precision. tions and provides a system that will meet the existing demand for more advanced environmental imaging. It has In this paper we will present the development of state-of- been developed for visual inspection tasks in both indoor the-art, high speed, high accuracy, 3D laser radar techno- and outdoor environments. The system is art optical radar, logy. This work has been a joint effort between CMU and and is comparable to devices built by Erim, Odetics, and K2T and Z+F.
    [Show full text]
  • Status of Optical Coatings for the National Ignition Facility
    UCRL-CONF-153485 Photothermal multi-pixel imaging microscope Christopher J. Stolz, Diane J. Chinn, Robert D. Huber, Carolyn L. Weinzapfel, and Zhouling Wu This article was submitted Boulder Damage Symposium XXXV Annual Symposium on Optical Materials for High Power Lasers Boulder, Colorado September 22-24, 2003 December 1, 2003 U.S. Department of Energy Lawrence Livermore National Laboratory Approved for public release; further dissemination unlimited This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. Updated October 14, 2003 Photothermal multi-pixel imaging microscope Christopher J. Stolza, Diane J. Chinna, Robert D. Hubera, Carolyn L. Weinzapfela, and Zhouling Wub aUniversity of California, Lawrence Livermore National Laboratory, 7000 East Avenue L-491, Livermore, CA 94550 bValuTech Corporation, 5951 Corte Cerritos, Pleasanton, CA 94566 ABSTRACT Photothermal microscopy is a useful nondestructive tool for the identification of fluence-limiting defects in optical coatings.
    [Show full text]
  • UV Optical Filters and Coatings
    UV Optical Filters and Coatings BARR PRECISION OPTICS & THIN FILM COATINGS Materion Barr Precision Optics & Thin Film Coatings is a leading manufacturer and supplier of precision optical filters, hybrid circuits, flexible thin films and custom thin film coating services. We offer coating solutions for manufacturers in the defense, commercial, space, science, astronomy and thermal imaging markets. UltraViolet (UV) Optical Filters and Coatings Materion offers Ultraviolet (UV) optical filters and coatings used Material Options Include: in a wide variety of existing and emerging UV-based applications. n Metal-Dielectric Bandpass Filters, fully blocked from Whether the requirement is for small, prototype UV filter quantity, a the UV to IR “one-of-a-kind” coated optic, or for large-scale volume manufactur- n UVA, UVB Filters - fully blocked ing associated with an OEM application, Materion is equipped to n UV Filter Arrays, Discrete and Patterned meet the need. With Materion’s approach to filter design and manu- n UV Bandpass Filters with high transmission – facture, our filter design engineers work closely with our customers’ made with Environmentally-Durable Oxide Films optical system designers throughout the filter development process. n Mercury-line Isolation Filters such as i-line and g-line Filters The optical filters and coatings that result from this collaborative n AR-Coatings for UV Spectral Range process often serve to optimize the performance characteristics n UV Laser Bandpass Filters of our customers’ instruments and applications. When it comes to filter design and manufacture in the UV spectral range, Materion has n Solderable-metalized coatings developed an extensive library of manufacturing plans for UV filters n Wide UV Passband Filters (such as filters in UVC) and coatings which can be deployed or tailored to produce optical blocked for use with SiC or GaN Detectors filters, that best match customer requirements.
    [Show full text]
  • Reflectance in Thin Films
    TECHNICAL PAPER Reflectance in Thin Films Abstract Reflectance (R) is the fraction of incident light reflected from a surface and is an intrinsic optical property of thin films. It is essential in determining color, transparency and polarization characteristics of the film. Total internal reflectance is also important in devices such as optical waveguides. Reflectance depends on the energy band structure and associated plasma frequency of charge carriers. As a result, high reflection spectral regions are different for metals, semiconductors and insulators. Basic relations that determine reflectance will be presented and related to refractive index, extinction coefficient, color and transparency of these three classes of thin film materials. Reflectance of thin films also depends on thickness and surface quality. In addition to spectral dependence, the color associated with reflectance can also be described by Tristimulus values and Chromaticity diagrams. Antireflection and high reflection multilayer thin film coatings will also be addressed. Introduction The reflectivity or reflectance (R), of a surface is an intrinsic optical property of a surface. In many optical, electrooptic, telecommunications, solar concentrator and architectural applications, reflectance must either be controlled (reduced or enhanced), or the color of the object changed (e.g., given a “gold” color). For example, heat mirrors are used to reflect infrared wavelengths to reduce heat loss or ingress through windows. Infrared reflectance must be maximized while keeping visible light transmission through the window high. Multilayer low-e and solar control coatings are used to achieve this performance but must be applied to low cost plastic films and glazings. Combined with absorption, reflectance determines color and intensity (or energy) of reflected light.
    [Show full text]
  • Optical Article Having a Conductive Anti-Reflection Coating
    Europaisches Patentamt 0101033 J European Patent Office Publication number: B1 Office europeen des brevets EUROPEAN PATENT SPECIFICATION 08.11.89 Intel.4: G 02 B 1/10 Date of publication of patent specification: Application number: 83107752.4 Date of filing: 05.08.83 Optical article having a conductive anti-reflection coating. (§) Priority: 09.08.82 US 406302 Proprietor: OPTICAL COA1COATING LABORATORY, INC. 2789 Northpoint Parkway Date of publication of application: Santa Rosa, CA 95401 (US) 22.02.84 Bulletin 84/08 Inventor: Hahn, Robert E. Publication of the grant of the patent: 1657EICaminoWay 08.1 1.89 Bulletin 89/45 Santa Rosa California 95404 (US) Inventor: Jones, Thomas R. 2139 Saint John Court Designated Contracting States: Santa Rosa California 95401 (US) AT BE CH DE FR GB IT LI LU NL SE Inventor: Berning, Peter H. 1287 Bingtree Way Sebastopol California 95472 (US) References cited: BE-A- 560 087 DE-A-968248 Representative: von Fiiner, Alexander, Dr. et al US-A-2852415 Patentanwalte v. Fiiner, Ebbinghaus, Finck US-A-3 679 291 Mariahilfplatz2&3 CO US-A-3914516 D-8000 Miinchen 90 (DE) US-A-4313 647 vol. 7, 1974, CO APPLIED OPTICS, 13, no. July cited: New York, US; H. DUPOISOT References CO pages 1605-1609, GLASTECHNISCHE BERICHTE, vol. 53, 9, al.: lumiere interferentiels a larges no. o et "Pieges a 245-258, Frankfurt am Main, DE; bandes azimuthale et spectrale" 1980, pages H.J. GLASER: "Verfahren zur Beschichtung von 5 Fensterscheiben mit Sonnen- und Warmeschutzschichten" months from the publication of the mention of the grant of the European patent, any person may o Note- Within nine shall notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Antireflective Coatings
    materials Review Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review Mehdi Keshavarz Hedayati 1,* and Mady Elbahri 1,2,3,* 1 Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Kiel 24143, Germany 2 Nanochemistry and Nanoengineering, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany 3 Nanochemistry and Nanoengineering, School of Chemical Technology, Aalto University, Kemistintie 1, Aalto 00076, Finland * Correspondence: [email protected] (M.K.H.); mady.elbahri@aalto.fi (M.E.); Tel.: +49-431-880-6148 (M.K.H.); +49-431-880-6230 (M.E.) Academic Editor: Lioz Etgar Received: 2 May 2016; Accepted: 15 June 2016; Published: 21 June 2016 Abstract: Reduction of unwanted light reflection from a surface of a substance is very essential for improvement of the performance of optical and photonic devices. Antireflective coatings (ARCs) made of single or stacking layers of dielectrics, nano/microstructures or a mixture of both are the conventional design geometry for suppression of reflection. Recent progress in theoretical nanophotonics and nanofabrication has enabled more flexibility in design and fabrication of miniaturized coatings which has in turn advanced the field of ARCs considerably. In particular, the emergence of plasmonic and metasurfaces allows for the realization of broadband and angular-insensitive ARC coatings at an order of magnitude thinner than the operational wavelengths. In this review, a short overview of the development of ARCs, with particular attention paid to the state-of-the-art plasmonic- and metasurface-based antireflective surfaces, is presented. Keywords: antireflective coating; plasmonic metasurface; absorbing antireflective coating; antireflection 1.
    [Show full text]
  • Optical Coating Material to Realize High Contrast for Display Cover Glass Success in Joint Development with Tohoku University and University of Washington
    September 21, 2018 Nippon Electric Glass Co., Ltd. Optical coating material to realize high contrast for display cover glass Success in joint development with Tohoku University and University of Washington In joint work with a research group led by Professor Hitoshi Takamura of Tohoku University and with the University of Washington in the U.S., Nippon Electric Glass Co., Ltd. (Head Office: Otsu, Shiga, Japan, President: Motoharu Matsumoto) has developed optical coating material for display cover glass that realizes displays with high contrast images and a high quality appearance. Liquid crystal displays are currently used on devices such as televisions, personal computers, smartphones and in-vehicle monitors. However, the leaking of light from the backlight makes the expression of dark colors difficult and there is an issue regarding how to best obtain high contrast images. The merit of the newly developed material is that it has high and uniform absorption in the wavelengths of visible light (400 nm to 700 nm). By using it as part of the AR (anti-reflection) coating material used to suppress the reflection from external light on the display, it is also possible to absorb the light leaking from the backlight to realize sharp images with rich black colors. It is also possible to express a deeper black color on the black printed part (frame part) around the display cover glass, to realize an external appearance with high quality. We will accelerate the speed of the development work to aim for a quick startup of mass production and hope to realize display cover glass with higher added value to lead to commercialization.
    [Show full text]
  • Light and Color
    Chapter 9 LIGHT AND COLOR What Is Color? Color is a human phenomenon. To the physicist, the only difference be- tween light with a wavelength of 400 nanometers and that of 700 nm is Different wavelengths wavelength and amount of energy. However a normal human eye will see cause the eye to see another very significant difference: The shorter wavelength light will different colors. cause the eye to see blue-violet and the longer, deep red. Thus color is the response of the normal eye to certain wavelengths of light. It is nec- essary to include the qualifier “normal” because some eyes have abnor- malities which makes it impossible for them to distinguish between certain colors, red and green, for example. Note that “color” is something that happens in the human seeing ap- Only light itself paratus—when the eye perceives certain wavelengths of light. There is causes sensations of no mention of paint, pigment, ink, colored cloth or anything except light color. itself. Clear understanding of this point is vital to the forthcoming discus- sion. Colorants by themselves cannot produce sensations of color. If the proper light waves are not present, colorants are helpless to produce a sensation of color. Thus color resides in the eye, actually in the retina- optic-nerve-brain combination which teams up to provide our color sen- Color vision is sations. How this system works has been a matter of study for many years complex and not and recent investigations, many of them based on the availability of new completely brain scanning machines, have made important discoveries.
    [Show full text]
  • High Performance Thin Film Optical Coatings Technical Capabilities 06/20
    High Performance Thin Film Optical Coatings Technical Capabilities 06/20 ZC&R Coatings for Optics 1401 Abalone Avenue • Torrance, CA 90501 • Phone: (800) 426-2864 E-mail: [email protected] • Web: www.abrisatechnologies.com High Performance Thin Film Optical Coatings Page 2 Technical Reference Document 06/20 ZC&R Coatings for Optics, an Abrisa Technologies Company provides high-efficiency coatings for industrial, commercial, and opto-electronic applications. The broad selection of coatings is applied via electron beam and ion-assisted electron beam deposition to influence and control reflectance, transmittance, absorbance and resistance. From high performance Indium Tin Oxide (ITO) and Index-Matched Indium Tin Oxide (IMITO) coatings to patterned optics as well as Anti-Reflective (AR) and anti-glare glass, ZC&R’s expert engineering team can deliver coatings to your detailed specifications. We provide coatings and components from 200nm to 20 microns, from the ultraviolet (UV) to the far infrared (IR). Additional thin film optical coating products include front and back surface mirrors, dichroic filters, band pass color filters, Anti-Reflective (AR), beam splitters, metal coatings, precision hot mirrors, cold mirrors, neutral density filters, and IR and UV filters. Capabilities Overview Custom Design and Engineering - (Page 3) Coating Chamber - (Page 3) Substrate Size and Shape Specifications - (Page 3) Measurement and Inspection - (Page 3) Patterning - (Page 4) Coatings Capabilities CleanVue™ PRO - (Pages 5-7) PRO-AR399 UV Outdoor Version
    [Show full text]
  • Backstage Lighting Terminology
    Break-out: Adapter consisting of multiple receptacles (FM) wired to a single multipin (M) connector; may be a box or a cable assembly. Synonym: Break-out Box, Fan-out Burn Out: Failed lamp or color media that is burned through Channel: Specific control parameter encompassing single or multiple device attributes (lighting dimmers, audio signals, etc.) controlled as a unit Lighting and Electrics Terminology (A-Le) Channel Hookup: Paperwork designating the connection of Adapter: Electrical accessory that transitions between dimmer circuits to channels of control dissimilar connectors; may be a molded unit, box or cable assembly Circuit: Path for electricity to flow from the source, through a conductor, to a device(s) Amperes: Unit of measure for the quantity of electricity flowing in a conductor. Synonym: A, Amp, Current Circuit Breaker: Mechanical/Electrical device that is designed to automatically open (trip) if the current exceeds the rated Automated Luminaire: Lighting instrument with attributes level protecting the circuit; may be operated manually that are remotely controlled. Synonym: Automated Fixture, Synonym: Breaker, CB, OCPD, Overcurrent Protective Device Automated Light, Computerized Light, Intelligent Light, Motorized Light, Mover, Moving Light Color Extender: Top hat with color media holder. Synonym: Gel Extender Backlight: A lighting source that is behind the talent or subject from the viewers perspective. Synonym: Backs, Back Color Frame: Metal or heat resistant device that holds the Wash, Bx, Hair Light, Rim Light color media in front of a luminaire. Synonym: Gel Frame Balcony Rail: Lighting position mounted in front of or on the Color Media: Translucent material used to color light face of the balcony.
    [Show full text]
  • Optical and Chromaticity Properties of Metal-Dielectric Composite-Based Multilayer Thin-Film Structures Prepared by RF Magnetron Sputtering
    coatings Article Optical and Chromaticity Properties of Metal-Dielectric Composite-Based Multilayer Thin-Film Structures Prepared by RF Magnetron Sputtering Mohammad Nur-E-Alam * , Md Momtazur Rahman, Mohammad Khairul Basher, Mikhail Vasiliev and Kamal Alameh Electron Science Research Institute, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; [email protected] (M.M.R.); [email protected] (M.K.B.); [email protected] (M.V.); [email protected] (K.A.) * Correspondence: [email protected] Received: 18 February 2020; Accepted: 7 March 2020; Published: 9 March 2020 Abstract: Coated glass products, and especially the low-emissivity coatings, have become a common building material used in modern architectural projects. More recently, these material systems became common in specialized glazing systems featuring solar energy harvesting. Apart from achieving the stability of optical parameters in multilayer coatings, it is also important to have improved control over the design of visual color properties of the coated glass. We prepare metal-dielectric composite (MDC)-based multilayer thin-film structures using the radio frequency (RF)-magnetron sputtering deposition and report on their optical and chromaticity properties in comparison with these obtained using pure metal-based Dielectric/Metal/Dielectric (DMD) trilayer structures of similar compositions. Experimentally achieved Hunter L, a, b values of MDC-based multilayer building blocks of coatings provide a new outlook on the engineering of future-generation optical coatings with better color consistency and developing approaches to broaden the range of achievable color coordinates and better environmental stability. Keywords: metal-dielectric composites; multilayers; optical coatings; optical properties; color chromaticity; environmental stability 1.
    [Show full text]
  • Modern Optics Notes H. M. Van Driel Department of Physics University of Toronto Version
    Modern Optics Notes H. M. van Driel Department of Physics University of Toronto Version: 2.2 Contents Introduction 9 0.1. History of optics 9 0.2. Outline of the notes 10 References 11 Part 1. Light as an Electromagnetic Phenomenon 12 Chapter 1. Propagation of Light 13 1.1. Maxwell’s Equations and the Constitutive Relations 13 1.2. Wave Solutions to Maxwell’s Equations in Homogeneous, Dielectric Media 14 1.3. Plane, Spherical and Cylindrical Waves 15 1.4. Phasor Representation of Waves 18 1.5. Complex Form of Maxwell’s Equations in Dielectric and Conducting Media 18 1.6. Dispersion Relation for Plane Waves 19 1.7. Classical Model for the Dielectric Function 21 1.7.1. Bound electron systems 21 1.7.2. Free electron systems 26 1.8. Pulses 28 Appendix 2.1: Fourier Transforms 29 References 30 Problems 30 Special Note on Phase Conventions 31 Chapter 2. Energy and Linear Momentum in an Electromagnetic Wave. 32 2.1. Transport of Energy in an Electromagnetic Wave 32 2 CONTENTS 3 2.2. Time Average of Sinusoidal Quantities 33 2.3. Poynting’s Theorem for Dispersive Media 33 2.4. Optical Units 34 2.5. Linear Momentum and Radiation Pressure of Light 34 References 35 Problems 35 Chapter 3. The Vector Nature of Light: Polarization Effects 36 3.1. Introduction 36 3.2. Description of Polarization States 36 3.3. Anisotropic Optical Media 40 3.4. Matrix Representation of Polarization–The Jones Calculus 41 3.5. Optical Activity 44 3.6. Magneto- and Electro-optic Effects 46 i) Faraday Rotation in Solids 46 ii) Voigt Effect 46 iii) Pockels Effect 46 iv) Kerr Effect 46 v) The Cotton-Mouton Effect; 47 References 47 Problems 48 Special Note on Phase Conventions 48 Chapter 4.
    [Show full text]