Download Author Version (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Download Author Version (PDF) RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 9 Journal Name RSC Advances Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE New Technology for Post-Combustion Abatement of Carbon Dioxide via in situ Generated Superoxide Anion-Radical Uri Stoin *a, Zach Barnea b and Yoel Sasson c Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 5 DOI: 10.1039/b000000x A novel chemistry for the efficient sequestration of carbon dioxide via swift nucleophilic attack by superoxide anion is disclosed. Relatively stable aqueous solution of the latter is generated in situ by contacting alkali hydroxide solution with hydrogen peroxide at pH 11. Using a simple gas liquid scrubber containing the above blend, carbon dioxide is quantitatively absorbed from a gas stream under ambient 10 conditions and is totally converted to aqueous carbonate. The aqueous solution containing the in situ generated superoxide specie was found to be far more effective for absorbing CO 2 than the standard ethanolamine or soda caustic solutions. Manuscript Introduction technologies in two main groups of abatement methods, reversible process (absorption/desorption) and mineralization Climate change is considered to be one of the greatest 1 technologies. However, relatively few reversible methods have 15 environmental threats of our times. The atmospheric 50 gained any measure of acceptance from an industrial viewpoint. concentration of greenhouse gases has increased steadily over the 12 Currently, CO can be removed from flue gas and waste gas past century and is approaching disturbing levels. 2 Current 2 streams by absorption into amine solutions such as mono- research shows that there is an excess of approximately 3.9% ethanolamine (MEA) to form the ammonium carbamate, this is a CO with respect to the natural ‘‘carbon cycle’’. 3 The 2 well understood and widely used reversible technology. 13 MEA 20 atmospheric warming is associated with a global climate change 55 has a high CO absorption capacity and it readily reacts with CO Accepted and a planetary temperature increase. 4 The growing evidence that 2 2 under normal conditions. Nevertheless, there are still several links the greenhouse gas, carbon dioxide and global climate serious drawbacks to this methodology: the uptake of water into change highlights the need to develop cost effective carbon the gas stream causes serious corrosion in the process sequestration schemes. 5 infrastructure, the loss of volatile amines and evaporation of 25 The largest source of CO 2 emission (nearly sixty percent) comes 60 water during the driving-off of CO results in an increase in from power generation, public electricity and heat production 2 operating costs. 14 In addition, the thermal release of CO from using fossil fuel combustion. 6 The International Energy Agency 2 the carbamate solution requires a substantial energy input. The (IEA) predicts that fossil fuels will remain the dominant source of thermal instabilities of both MEA and the carbamate lead to energy until 2030. 7 Other pollution sources are combustion decomposition which can cause environmental problems. 15 30 systems such as cement kilns, furnaces in industries and iron 65 Additionally, flue gases coming from coal combustion will and steel production plants. In these large-scale processes, the Advances contain not only CO , N , O and H O, but also air pollutants direct firing of fuel with air in a combustion chamber has been 2 2 2 2 such as SOx, NOx, HCl, HF, particulates and other trace organic (for centuries) the most economic technology to extract and and inorganic contaminants. 16 Those contaminants can react with use the energy contained in the fuel. Therefore, the strategic MEA to from non sedimentary and heat stable salts such as 35 importance of post-combustion capture systems becomes 17 70 ammonium nitrate, ammonium sulfate etc. Nonetheless, MEA evident when confronted with the reality of today’s sources RSC is currently the industry standard for CO and other acidic gasses of CO emissions. 8 2 2 reversible absorption technologies, but it is certainly not an The removal of a gaseous component through contact with a optimized reagent, rather one of convenience. 18 liquid is known as wet scrubbing. Wet scrubbing can be divided The alternative, irreversible (mineralization) technology for 40 into processes where there is a chemical reaction between the 75 carbon dioxide abatement from flue gas is by aqueous alkaline sorbate and the sorbent and others where the sorbate is just solutions to generate inorganic carbonates. These processes are physically dissolved into the sorbent phase. 9 known since the 70s of last century. 19 The absorption of CO A wide range of different methods for carbon dioxide treatment 2 10 into strong hydroxide solutions was shown to proceed via an already exists. Adsorption, absorption, ionic liquid - irreversible second order reaction between CO 2 and OH ions. 45 technologies were reported and even biological and membrane 20 80 Unfortunately, this absorption technology is effective only, treatment was suggested. 11 We can characterize these This journal is © The Royal Society of Chemistry [year] [journal] , [year], [vol] , 00–00 | 1 RSC Advances Page 2 of 9 under conditions of strong caustic solutions, with low humidity, at high temperature and long liquid/gas contact time. 21 Consequently CO 2 absorption by alkali did not develop into a practical method for carbon dioxide post-combustion capture. 22 5 In the last decades researches have proposed scores of different 23 interesting technologies for complete mineralization of CO 2. However these technologies have several serious drawbacks. The main drawbacks are slow reaction rates and special reaction conditions. Consequently they cannot be applied as industrial 10 technologies. In this study we advocate the in situ generated superoxide anion radical as a unique reagent for the swift capture, abatement and total mineralization of carbon dioxide. Reactive oxygen species 55 Figure 1: Schematic assembly of the CO 2 absorption system. 1- (ROS) such as peroxide and superoxide reagents were tested Carbon dioxide cylinder, 2- flow meter, 3-magnetic stirrer, 4- 24 15 previously as traps for carbon dioxide. Currently, potassium scrubber, 5- CO 2/O 2 gas analyzer with data logger, 6-computer, superoxide is utilized in self-contained breathing equipment for 7-bypass. the generation of oxygen gas. 25 The superoxide radical anion is an ROS that possesses both anionic and free-radical properties. Physical Measurements The latter is a powerful and effective nucleophile in polar aprotic 26 60 FTIR (Fourier transform infrared spectroscopy) studies were 20 solvents such as dimethyl sulfoxide. Conversely, in protic conducted using Peact IR 4000, manufactured by Mettler-Toledo solvents, e.g. water, it is presumed inactive, owing to its strong Ltd. XRD (X-ray diffraction) studies were conducted using X-ray solubility by this medium and its rapid hydrolysis. Aqueous diffractometer, Range: 1100 <2 θ°> 1680 , D8 advance by Bruker superoxide is therefore not an obvious candidate for practical Manuscript AXS. EPR spectra were recorded using a Bruker EMX-220 X- applications. 65 band ( υ = 9.4 GHz) EPR (electron paramagnetic resonance 25 We have recently described a novel method for the in-situ spectroscopy) spectrometer equipped with an Agilent 53150 A generation of a remarkably water stable superoxide anion by frequency counter at room temperature (RT, T = 295 K). To reacting sodium or potassium hydroxide with hydrogen peroxide achieve a better signal-to-noise ratio for weak fast decaying under ambient conditions. 27 This reagent was effectively utilized signals, each 1024 point EPR spectrum was recorded in over- for the total mineralization of carbon tetrachloride and other 28 70 modulation mode using magnetic field modulation frequency of 30 polyhalogen compounds. In this manuscript, we demonstrate 100 kHz and modulation amplitude of 0.3 mT, microwave power the unique nucleophilic properties of the as-prepared superoxide of 10 mW and 16 fast (10 s) coherent acquisition scans. anion in water and its instantaneous reaction with carbon dioxide Processing (base line correction, digital filtering etc.) of EPR which renders it most likely, the superb reagent for abatement of Accepted spectra was performed by using Bruker WIN-EPR software, CO 2 from flue gas. 75 simulations of spin adducts were performed using Bruker 35 It should be noted that a technologies for H S and CO absorption 2 2 WINEPR SimFonia and NIEHS/NIH P.E.S.T. WinSim2002 and into alkaline solutions containing an oxidizing agent are already OriginLab Corp. Origin software. CO concentration was known. 29 However, our new proposed technology has a different 2 determined using a gas analyzer with IR detector (the range are reactive species (superoxide) and different final products. The 1% - 100%) manufacture by Emproco Ltd. end products of this proposed process are carbonate salt and 40 oxygen that can be used in various processes and products in the 80 CO absorption system chemical and food industry.
Recommended publications
  • Alkali-Silica Reactivity: an Overview of Research
    SHRP-C-342 Alkali-Silica Reactivity: An Overview of Research Richard Helmuth Construction Technology Laboratories, Inc. With contributions by: David Stark Construction Technology Laboratories, Inc. Sidney Diamond Purdue University Micheline Moranville-Regourd Ecole Normale Superieure de Cachan Strategic Highway Research Program National Research Council Washington, DC 1993 Publication No. SHRP-C-342 ISBN 0-30cL05602-0 Contract C-202 Product No. 2010 Program Manager: Don M. Harriott Project Maxtager: Inam Jawed Program AIea Secretary: Carina Hreib Copyeditor: Katharyn L. Bine Brosseau May 1993 key words: additives aggregate alkali-silica reaction cracking expansion portland cement concrete standards Strategic Highway Research Program 2101 Consti!ution Avenue N.W. Washington, DC 20418 (202) 334-3774 The publicat:Lon of this report does not necessarily indicate approval or endorsement by the National Academy of Sciences, the United States Government, or the American Association of State Highway and Transportation Officials or its member states of the findings, opinions, conclusions, or recommendations either inferred or specifically expressed herein. ©1993 National Academy of Sciences 1.5M/NAP/593 Acknowledgments The research described herein was supported by the Strategic Highway Research Program (SHRP). SHRP is a unit of the National Research Council that was authorized by section 128 of the Surface Transportation and Uniform Relocation Assistance Act of 1987. This document has been written as a product of Strategic Highway Research Program (SHRP) Contract SHRP-87-C-202, "Eliminating or Minimizing Alkali-Silica Reactivity." The prime contractor for this project is Construction Technology Laboratories, with Purdue University, and Ecole Normale Superieure de Cachan, as subcontractors. Fundamental studies were initiated in Task A.
    [Show full text]
  • The ABC's of the Reactions Between Nitric Oxide, Superoxide
    Oxygen'99 Sunrise Free Radical School 1 The ABC’s of the Reactions between Nitric Oxide, Superoxide, Peroxynitrite and Superoxide Dismutase Joe Beckman Department of Anesthesiology The University of Alabama at Birmingham [email protected] The interplay between nitric oxide and superoxide to form peroxynitrite is a major biological process that competes in a remarkably subtle fashion with superoxide dismutase in vivo. The complex interactions between superoxide, nitric oxide reveals some extraordinary features about the difficulties of effectively scavenging of superoxide in a biological system. The discovery of dominant mutations in the cytosolic Cu,Zn SOD leading to the selective death of motor neurons in ALS highlights how subtle the scavenging of superoxide can be in the presence of low concentrations of nitric oxide. In the 1980’s, the following reaction became the dominant explanation for how superoxide was toxic in vivo. While the Haber-Weiss reaction became a commonly accepted mechanism of oxidant injury, it suffers many limitations. The reduction step with superoxide is slow and can easily Joe Beckman 1 Oxygen'99 Sunrise Free Radical School 2 be substituted by other reductants such as ascorbate. The source of catalytic iron in vivo is still uncertain, and many forms of chelated iron do not catalyze this reaction. The reaction of ferrous iron with hydrogen peroxide is slow and once formed, hydroxyl radical is too reactive to diffuse more than a few nanometers. Finally, the toxicity of hydroxyl radical is far from certain. While it is a strong oxidant, it may be too reactive to be generally toxic.
    [Show full text]
  • Endogenous Superoxide Is a Key Effector of the Oxygen Sensitivity of A
    Endogenous superoxide is a key effector of the oxygen PNAS PLUS sensitivity of a model obligate anaerobe Zheng Lua,1, Ramakrishnan Sethua,1, and James A. Imlaya,2 aDepartment of Microbiology, University of Illinois, Urbana, IL 61801 Edited by Irwin Fridovich, Duke University Medical Center, Durham, NC, and approved March 1, 2018 (received for review January 3, 2018) It has been unclear whether superoxide and/or hydrogen peroxide fects (3, 4). Thus, these phenotypes confirmed the potential tox- play important roles in the phenomenon of obligate anaerobiosis. icity of reactive oxygen species (ROS), and they broadly supported This question was explored using Bacteroides thetaiotaomicron,a the idea that anaerobes might be poisoned by endogenous major fermentative bacterium in the human gastrointestinal tract. oxidants. Aeration inactivated two enzyme families—[4Fe-4S] dehydratases The metabolic defects of the mutant E. coli strains were sub- and nonredox mononuclear iron enzymes—whose homologs, in sequently traced to damage to two types of enzymes: dehy- contrast, remain active in aerobic Escherichia coli. Inactivation- dratases that depend upon iron-sulfur clusters and nonredox rate measurements of one such enzyme, B. thetaiotaomicron fu- enzymes that employ a single atom of ferrous iron (5–9). In both marase, showed that it is no more intrinsically sensitive to oxi- enzyme families, the metal centers are solvent exposed so that dants than is an E. coli fumarase. Indeed, when the E. coli they can directly bind and activate their substrates. Superoxide B. thetaiotaomicron enzymes were expressed in , they no longer and H2O2 are tiny molecules that cannot easily be excluded from could tolerate aeration; conversely, the B.
    [Show full text]
  • Dark Biological Superoxide Production As a Significant Flux and Sink of Marine Dissolved Oxygen
    Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen Kevin M. Sutherlanda,b, Scott D. Wankela, and Colleen M. Hansela,1 aDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and bDepartment of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Donald E. Canfield, Institute of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, Odense M., Denmark, and approved January 3, 2020 (received for review July 19, 2019) The balance between sources and sinks of molecular oxygen in the concentrations, even when the subject lacked a CO2 concentrating oceans has greatly impacted the composition of Earth’s atmo- mechanism (2). Studies of Mehler-related oxygen reduction in sphere since the evolution of oxygenic photosynthesis, thereby some cyanobacteria have been shown to exceed 40% of GOP (6, exerting key influence on Earth’s climate and the redox state of 7). Altogether, these studies demonstrate that Mehler-related (sub)surface Earth. The canonical source and sink terms of the oxygen loss in marine cyanobacteria and algae likely represents marine oxygen budget include photosynthesis, respiration, photo- a larger proportion of total nonrespiratory O2 reduction than is respiration, the Mehler reaction, and other smaller terms. How- observed in higher plants. ever, recent advances in understanding cryptic oxygen cycling, The role of intracellular superoxide production as a significant namely the ubiquitous one-electron reduction of O2 to superoxide sink of oxygen has been recognized since the 1950s for its place in by microorganisms outside the cell, remains unexplored as a po- the Mehler reaction (8); however, the role of extracellular su- tential player in global oxygen dynamics.
    [Show full text]
  • Supporting Information For
    Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2020 Supporting Information for Enhanced photocatalytic selectivity of noble metallized TiO2 (Au-, Ag-, Pt- and Pd-TiO2) nanoparticles for the reduction of selenate in water: Tunable Se reduction product H2Se(g) vs. Se(s) {_Placeholder for Author Names_} {_Place holder for affiliations_} For submission to: Environmental Science: Nano KEYWORDS: Photocatalysis, selenate, selenium, noble metal deposited TiO2, photoreduction, direct Z-scheme 1 S1. Photocatalytic experimental set-up Figure S1. (a) Photograph and (b) schematic image of the batch photocatalytic reaction set-up for the reduction of selenium oxyanions in synthetic and real industrial FGDW. 2 S2. Noble metal deposited TiO2 Figure S2. Photograph presenting the various colours of the final noble metal deposited TiO2 photocatalysts. From left to right: TiO2, Ag-TiO2, Au-TiO2, Pt-TiO2 and Pd-TiO2. 3 Figure S3. (a) Photocatalytic reduction of 5 mg/L (as Se) sodium selenate in MilliQ over varying concentrations of silver deposited on TiO2 and (b) Photocatalytic reduction of 5 mg/L (as Se) sodium selenate in MilliQ over calcined and uncalcined samples of 1 wt% Ag-TiO2. 4 Figure S4. High resolution transmission electron microscopy (HR-TEM) with electron energy loss spectroscopy (EELS) for three separate locations on the TEM grid prepared with Se 19 -2 deposited onto TiO2 after 1.0 photons × 10 cm of UV exposure. (a-d, e-h, i-l) HR-TEM, EELS O imaging, EELS Ti Imaging, EELS Se imaging, for location 1, 2 and 3 respectively and (m-o) EELS line scans for location 1, 2 and 3 respectively.
    [Show full text]
  • Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases
    International Journal of Molecular Sciences Review Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases Fabrice Collin Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France; [email protected] Received: 26 April 2019; Accepted: 13 May 2019; Published: 15 May 2019 Abstract: Increasing numbers of individuals suffer from neurodegenerative diseases, which are characterized by progressive loss of neurons. Oxidative stress, in particular, the overproduction of Reactive Oxygen Species (ROS), play an important role in the development of these diseases, as evidenced by the detection of products of lipid, protein and DNA oxidation in vivo. Even if they participate in cell signaling and metabolism regulation, ROS are also formidable weapons against most of the biological materials because of their intrinsic nature. By nature too, neurons are particularly sensitive to oxidation because of their high polyunsaturated fatty acid content, weak antioxidant defense and high oxygen consumption. Thus, the overproduction of ROS in neurons appears as particularly deleterious and the mechanisms involved in oxidative degradation of biomolecules are numerous and complexes. This review highlights the production and regulation of ROS, their chemical properties, both from kinetic and thermodynamic points of view, the links between them, and their implication in neurodegenerative diseases. Keywords: reactive oxygen species; superoxide anion; hydroxyl radical; hydrogen peroxide; hydroperoxides; neurodegenerative diseases; NADPH oxidase; superoxide dismutase 1. Introduction Reactive Oxygen Species (ROS) are radical or molecular species whose physical-chemical properties are well-known both on thermodynamic and kinetic points of view.
    [Show full text]
  • United States Patent (19) | 1 || 3,975,503 Hauschild Et Al
    United States Patent (19) | 1 || 3,975,503 Hauschild et al. |45| Aug. 17, 1976 (54) METHOD FOR PRODUCING ALKAL 3.25.49.46 6/1966 Hass et al. .......................... 423f42 3644()89 2/ 1972 Minz et al........................... 423f4 CARBONATE 3,751.56() 8/1973 Neumann..... ... .42318.9 (75) Inventors: Ulrich Hauschild; Reimar Musall, 3,7739()2 11/1973 Neumann..... ... 42.3/421 both of Hannovcr; Hans-Jirgen 387 (),784 3/1975 Sueman............................... 4231431 Schröder, Pattensen, Hannover, all of Germany FOREIGN PATENTS OR APPLICATIONS 73,794 4/1968 Belgium.............................. 423/42 Assignee: Kali-Chemie Aktiengesellschaft, 229 3/1971 Japan..... ... 423f421 Hannover, Germany 2) 43 6/197l Japan..................... ... 4231421 89569() 5/1962 United Kingdom................. 423/42 Filcd: Dec. 13, 1974 Appl. No.: 532,365 Primary Examiner-Oscar R. Vertiz Assistant Examiner-Gary P. Straub Related U.S. Application Data Attorney, Agent, or Firn-Spencer & Kaye 63 Continuation of Ser. No. 436,719, Jan. 25, 1974, abandoned, which is a continuation of Ser. No. 204,058, Dec. 2, 1971, abandoned. 57) ABSTRACT A method for producing alkali carbonate crystals, in 3() Foreign Application Priority Data cluding adding to an alkali carbonate and alkali hy Dec. 8, 97 () Germany............................ 206()287 droxide solution stream a 10 to 75 weight-% alkali hy Aug. 27, 197 Germany............................ 243 ()()8 droxide solution, charging the resulting mixture into a CO-containing gas whose temperature is from 150 to 52) U.S. Cl.................................. 423/421; 423/189 700°C, collecting mixture remaining as liquid from the 51 int. Cl............................................ C01D 7/07 gas at the end of a residence time of mixture in gas of 58 Field of Search............................
    [Show full text]
  • Peroxides, Su Peroxides, and Ozonides of Alkali and Alkaline Earth Metals
    Peroxides, Su peroxides, and Ozonides of Alkali and Alkaline Earth Metals Il'ya Ivanovich Vol'nov Head, Laboratory of Peroxide Chemistry N. S. Kurnakov Institute of General and Inorganic Chemistry Academy of Sciences of the USSR, Moscow Translated from Russian by J. Woroncow Life Sciences Group General Dynamics/Convair Division San Diego, California Edited by A. W. Petrocelli Chief, Chemistry and Chemical Engineering Section General Dynamics / Electric Boat Division Groton, Connecticut PLENUM PRESS· NEW YORK· 1966 Born in 1913, Il'ya Ivanovich Vol'nov is head of the laboratory of peroxide chemistry of the N. S. Kurnakov Institute of General and Inorganic Chem­ istry of the Academy of Sciences of the USSR in Moscow. He joined the Institute in 1939 and since 1949 he has authored more than 50 articles dealing with the chemistry of the inorganic peroxides, superoxides, and ozonides. Vol'nov served as editor for the proceedings of the 2nd All-Union Conference on the Chemistry of Peroxide Compounds, published by the Academy of Sciences in 1963. He was also editor of T. A. Dobrynina's monograph on Lithium Peroxide, published in 1964, and edited a biblio­ graphical index covering the world-wide literature for the period 1956 to 1962 on the chemistry of peroxide compounds ( other than hydrogen peroxide) published under the auspices of the library of the Academy of Sciences of the USSR. ISBN 978-1-4684-8254-6 ISBN 978-1-4684-8252-2 (eBook) DOl 10.10071978-1-4684-8252-2 Library of Congress Catalog Card Number 66-22125 The original Russian text, first published for the N.
    [Show full text]
  • Highly Efficient Conversion of Superoxide to Oxygen Using Hydrophilic Carbon Clusters
    Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters Errol L. G. Samuela,1, Daniela C. Marcanoa,b,1, Vladimir Berkac,1, Brittany R. Bitnerd,e, Gang Wuc, Austin Pottera, Roderic H. Fabianf,g, Robia G. Pautlerd,e, Thomas A. Kentd,f,g,2, Ah-Lim Tsaic,2, and James M. Toura,b,2 aDepartment of Chemistry and bSmalley Institute for Nanoscale Science and Technology, Rice University, Houston, TX 77005; cHematology, Internal Medicine, University of Texas Houston Medical School, Houston, TX 77030; dInterdepartmental Program in Translational Biology and Molecular Medicine and Departments of eMolecular Physiology and Biophysics and fNeurology, Baylor College of Medicine, Houston, TX 77030; and gCenter for Translational Research in Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030 Edited* by Robert F. Curl, Rice University, Houston, TX, and approved January 12, 2015 (received for review September 8, 2014) Many diseases are associated with oxidative stress, which occurs these data, we estimate that there are 2,000–5,000 sp2 carbon when the production of reactive oxygen species (ROS) over- atoms on each PEG-HCC core. We have demonstrated the •− whelms the scavenging ability of an organism. Here, we evaluated efficacy of PEG-HCCs for normalizing in vivo O2 in models the carbon nanoparticle antioxidant properties of poly(ethylene of traumatic brain injury with concomitant hypotension. Si- • glycolated) hydrophilic carbon clusters (PEG-HCCs) by electron multaneously, we observed normalization in NO levels in paramagnetic resonance (EPR) spectroscopy, oxygen electrode, these experiments (26, 27). A better understanding of these and spectrophotometric assays. These carbon nanoparticles have 1 materials is necessary to potentially translate these thera- •− equivalent of stable radical and showed superoxide (O2 ) dismu- peutic findings to the clinic.
    [Show full text]
  • The Role of Superoxide Anion and Hydrogen Peroxide in Phagocytosis-Associated Oxidative Metabolic Reactions
    The role of superoxide anion and hydrogen peroxide in phagocytosis-associated oxidative metabolic reactions. R L Baehner, … , J Davis, R B Johnston Jr J Clin Invest. 1975;56(3):571-576. https://doi.org/10.1172/JCI108126. Research Article The contribution of hydrogen peroxide (H2O2) and one of its unstable intermediates, superoxide anion (O2), to the oxidative reactions that occur in phagocytizing leukocytes was explored by depleting these cells of O2. This was accomplished by allowing them to phagocytize latex particles coated with superoxide dismutase (SOD), which catalyzes the generation of H2O2 from O2. Although the rate and extent of phagocytosis of latex coated with bovine serum albumin was similar to latex coated with SOD, the rate of oxygen consumption, [14C]formate oxidation, [1-14C]glucose oxidation, and iodination of zymosan particles was significantly enhanced by SOD. In contrast, the rate and extent of reduction of nitroblue tetrazolium (NBT) was diminished by 60%. These studies indicate that the majority of NBT reduction by leukocytes is due to O2, whereas stimulation of the hexose monophosphate shunt and iodination of ingested particles requires H2O2 generated from the increased reduction of oxygen by phagocytizing leukocytes. Find the latest version: https://jci.me/108126/pdf The Role of Superoxide Anion and Hydrogen Peroxide in Phagocytosis-Associated Oxidative Metabolic Reactions ROBERT L. BAEHNER, SUZANNE K. MURRMANN, JACQUELiNE DAVIS, and RICHARD B. JOHNSTON, JR. From the Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202 and University of Alabama in Birmingham, Birmingham, Alabama 35233 and the Division of Hematology-Oncology, James Whitcomb Riley Hospital for Children, Indianapolis, Indiana 46202 A B S T R A C T The contribution of hydrogen peroxide oxidase, have been identified in leukocytes and each has (H202) and one of its unstable intermediates, superoxide received consideration as the primary oxidase mediating anion (O2), to the oxidative reactions that occur in these reactions (5, 6).
    [Show full text]
  • A Method for Producing Hydroxybenzoic Acids Directly from the Alkah Fusion Mixture of Sodium Benzenesulfonate
    A METHOD FOR PRODUCING HYDROXYBENZOIC ACIDS DIRECTLY FROM THE ALKAH FUSION MIXTURE OF SODIUM BENZENESULFONATE by Ichiro HiRAo. Taketoshi KiTo and Yukihiro HoKAMuRA Synopsis The reaction mixture from alkali fusion of sodium benzenesulfonate (SBS) cannot be used as starting material for the carboxylation of the alkali phenoxide, because of residual excess alkali. It was found that hydroxybenzoic acids were obtained in good yield by the reaction of carbon dioxide with the treated alkali fusion mass, in which the residual alkali hydroxide was completely con- verted to alkali alkoxide by the reaction with some aliphatic alcohols (C4•vCs) under the removal of the formed water as an azeotrope with the alcohol. For example, p-hydroxybenzoic acid was obtained in 66 9o yield (70 9o based on phenol) from the reaction product from the alkali fusion of SBS with potassium hydrox- ide in a1:3 molar ratio. This method is very convenient for the preparation of hydroxybenzoic acids from the mixture of phenol and alkali hydroxide with continuous treatment without preparation of alkali alkylcarbonates and alkali phenoxides separately, although this method is essentially the reaction of carboxylation of the latter in the presence of the former. 1. INTRODUCTION Aromatic hydroxy acids, such as p-hydroxybenzoic acid, are obtained mainly by the carboxylation of alkali phenoxide. This reaction, which we have often reported, can be roughly divided as follows ; (i) the reaction of alkali phenoxide with carbon dioxide in the solid-gas phases, (ii) the reaction in aprotic polar solvents in liquid phasei', (iii) the reaction of alkali phenoxide suspended in nonpolar solvents such as kerosene with carbon dioxide2', (iv) the reaction of alkali phenoxide with alkali alkyl carbonates3'.
    [Show full text]
  • M Iss Winnie M, Morgan GP / O Ffice of As
    NATIONAL AERONAUTICS AND SPACE AD WASIIINGTON.D C 20546 REPLY TO ATTN OF: October 16, 1970 TO : USI/Scientific & Technical Information Division Attention: Miss Winnie M, Morgan FROM: GP/Office of Assistant General Counsel for Patent Matters SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR In accordance with the procedures contained in the Code GP to Code US1 memorandum on this subject, dated June 8, 1970, the attached NASA-owned U.S. patent is being forwarded for abstracting and announcement in NASA STAR. The following information is provided: U.S. Patent No, 7,352 Corporate Source Calif, Institute of Technolosv Supplementary Corporate Source Jet Promls ion Labora torv NASA Patent Case No.: mp-01464 Please note that this patent covers an invention made by an employee of a NASA contractor. Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of Column No. 1 of the Specification, following the words e e with respect to an invention of, e .I1 Gayle Parker Enclosure: Copy of Patent (ACCESSIONu NUMBER) (NASA CR OR TMX OR AD NUMBER) (CATEGORY) B alkali battcries. To understand the invention, it will he first necessary to describe the general construction of the alkali battery. The nickel-cadmium battery will be dis- cussed for illustration purposes. In this battery the posi- B tive and negative plates are usually similar in construction, consisting of perforated pockets which contain the active niaterials.
    [Show full text]