Malassezia Furfur Javier Esteban Mussin1* , María Virginia Roldán2, Florencia Rojas1, María De Los Ángeles Sosa1, Nora Pellegri2 and Gustavo Giusiano1

Total Page:16

File Type:pdf, Size:1020Kb

Malassezia Furfur Javier Esteban Mussin1* , María Virginia Roldán2, Florencia Rojas1, María De Los Ángeles Sosa1, Nora Pellegri2 and Gustavo Giusiano1 Mussin et al. AMB Expr (2019) 9:131 https://doi.org/10.1186/s13568-019-0857-7 ORIGINAL ARTICLE Open Access Antifungal activity of silver nanoparticles in combination with ketoconazole against Malassezia furfur Javier Esteban Mussin1* , María Virginia Roldán2, Florencia Rojas1, María de los Ángeles Sosa1, Nora Pellegri2 and Gustavo Giusiano1 Abstract Malassezia furfur is lipophilic and lipid-dependent yeast, inhabitant of human skin microbiota associated with several dermal disorders. In recent years, along with the advances in nanotechnology and the incentive to fnd new antimi- crobial drugs, there has been a growing interest in the utilization of nanoparticles for the treatment of skin microbial infections. This work aimed to study the in vitro inhibitory activity of silver nanoparticles (AgNP) against 41 M. furfur clinical isolates, visualize the interaction between AgNP-Malassezia, evaluate the synergism with ketoconazole (KTZ) and to produce an antimicrobial gel of AgNP–KTZ. The synthesized AgNP were randomly distributed around the yeast surface and showed a fungicidal action with low minimal inhibitory concentration values. AgNP showed no antago- nistic efect with KTZ. The broad-spectrum antimicrobial property with fungicidal action of AgNP and its accumula- tion in afected areas with a sustained release profle, added to the great antifungal activity of KTZ against Malassezia infections and other superfcial mycoses, allowed us to obtain a gel based on carbopol formulated with AgNP–KTZ with the potential to improve the topical therapy of superfcial malasseziosis, reduce the number of applications and, also, prevent the recurrence. Keywords: Malassezia, Nanoparticles, Antifungal activity, Synergy Introduction papillomatosis, and neonatal pustulosis (Giusiano 2006; Yeasts of Malassezia genus are normal inhabitants of the Boekhout et al. 2010; Saunders et al. 2012; Rojas et al. human skin microbiota and other warm-blooded verte- 2014; Rudramurthy et al. 2014; Prohic et al. 2016). Cuta- brates. Since they are unable to synthesize fatty acids, all neous diseases associated with Malassezia are often Malassezia species are lipophilic and most of them lipid- chronic and recurrent. In these cases, the results of anti- dependent, requiring an external source of lipids. For fungal therapy, both topical and systemic, are not always this reason, they prevail in body areas rich in sebaceous efective due to high relapse rates (Giusiano et al. 2010; glands (Boekhout et al. 2010). Carrillo-Muñoz et al. 2013; Prohic et al. 2016; Rojas et al. Tese yeasts are considered to be the etiological agent 2016). of pityriasis versicolor and Malassezia folliculitis, associ- Topical antifungal medications are the frst-line treat- ated agents in seborrheic dermatitis/dandruf and a con- ment for Malassezia infections, and ketoconazole (KTZ) tributory factor that exacerbate other skin disorders such is one of the most efective antifungal agents. KTZ as atopic dermatitis, psoriasis, confuent and reticulate is a fungistatic imidazole that inhibits the lanosterol 14α-demethylase, an enzyme that regulates the synthe- *Correspondence: [email protected] sis of ergosterol. Te disruption of ergosterol biosynthe- 1 Mycology Department, Instituto de Medicina Regional, Universidad sis alters cell membrane structure, thus compromising Nacional del Nordeste, Consejo Nacional de Investigaciones Científcas membrane integrity and permeability and consequently y Tecnológicas (CONICET), Av. Las Heras 727, 3500 Resistencia, Chaco, Argentina interfering with cellular growth and reproduction. KTZ Full list of author information is available at the end of the article © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Mussin et al. AMB Expr (2019) 9:131 Page 2 of 9 was the frst broad-spectrum antifungal used in the treat- [N-[3-(trimethoxysilyl) propyl] diethylenetriamine] ment of superfcial mycoses (Gupta and Foley 2015). (ATS, Aldrich) was dissolved in ethanol absolute under Nanotechnology is an important feld of modern N2 atmosphere and magnetic stirring. Ten, both solu- research which deals with synthesis and manipulation tions were mixed and homogenized obtaining a fnal of structures of matter ranging from approximately 1 solution of 12 mM of AgNO3 and 0.197 M of ATS. Tis to 100 nm in size, commonly called nanomaterials (Liz- solution was placed at a temperature bath at 40 °C under Marzán and Kamat 2003; Rao et al. 2004). Te noble N2 atmosphere for 4 h. Te color of the solution changed metal nanoparticles showed unique and considerably from uncolored to bright yellow. diferent physical and chemical properties compared to their macro scaled counterparts (Feldheim and Foss Characterization of silver nanoparticles 2002). As the size of the nanoparticles decreased, their It was carried out by UV–Vis absorption spectroscopy surface-volume ratio and antimicrobial activity increased and transmission electron microscopy (TEM). (Rai et al. 2009; Sharma et al. 2009; Song and Kim 2009; Optical characterization of colloidal suspensions was Bera et al. 2014; Ahmed et al. 2016). Silver (Ag) is one of performed by UV–Vis absorption spectroscopy, using the noble metals with higher antimicrobial activity and UV/Vis spectrophotometer (Jasco V-530). UV–Vis spec- lower toxicity for animal cells (ATSDR 1990; Lansdown tra were acquired by employing ethanol as reference. Te 2010). colloidal stability of AgNP over time was evaluated by Tere has been a growing interest in silver nanoparti- visual observation and UV–Vis spectroscopy. cles (AgNP) over the years due to their potential appli- TEM images were acquired with a Phillips 100 keV. cation in human and animal medicine for treating skin Samples were prepared by dropping the nanoparticles infections including dermatomycosis (Rai et al. 2009; Ge suspension over a carbon coated TEM grid. Several TEM et al. 2014; Aljufali et al. 2015). Likewise, these particles images were processed with ImageJ free software to esti- either alone or in combination with other drugs, would mate mean size and standard deviation. represent a therapeutic alternative against resistant microorganisms, as well as in complications associated Microorganisms with the use of antifungals (Rai et al. 2009, 2012; Bera A total of 40 M. furfur isolates were studied. Isolates were et al. 2014). obtained from human clinical samples with diagnosis of Clinical and Laboratory Standards Institute (CLSI) pityriasis versicolor, seborrhoeic dermatitis/dandruf and document M27-A3, describes a broth microdilution atopic dermatitis. All Malassezia yeasts were deposited method for testing the in vitro antifungal susceptibil- in the culture collection of Mycology Department, Insti- ity for Candida species and Cryptococcus neoformans tuto de Medicina Regional (IMR), Universidad Nacional for the determination of minimal inhibitory concentra- del Nordeste (UNNE), Argentina. Identifcation was per- tions (MIC) (Clinical and Laboratory Standards Institute formed by polymerase chain reaction-restriction frag- 2008). Due to the nutritional requirements of Malasse- ment length polymorphism (PCR–RFLP) (Mirhendi et al. zia yeasts, this method is not applicable for this genus. 2005; Sosa et al. 2013). In addition, the reference strain Rojas et al. (2014) proposed a nutritionally supplemented M. furfur CBS 7019 was included. medium to evaluate the in vitro activity of antifungals Isolates were sub-cultured for 72 h onto modifed against some Malassezia species. Dixon Agar at 32 °C before antifungal susceptibility Te aims of this study were to: (a) study the in vitro testing. inhibitory activity of AgNP synthesized against Malasse- zia furfur clinical isolates, (b) evaluate this activity in Minimum inhibitory concentration (MIC) combination with KTZ, (c) visualize the interaction In order to evaluate the inhibitory activity of synthe- between AgNP-Malassezia and (d) produce and evaluate sized AgNP and KTZ (Sigma-Aldrich, Buenos Aires, the activity of an antimicrobial gel of AgNP–KTZ. Argentina), MIC were determined by broth microdilu- tion method in accordance with CLSI M27-A3 document Materials and methods (Clinical and Laboratory Standards Institute 2008) with Synthesis of silver nanoparticles modifcations proposed by Rojas et al. (2014). AgNP were synthesized by chemical reduction of AgNO 3 All inoculum suspensions were prepared in ster- in ethanol, according to Roldán et al. (2008), with some ile saline solution and turbidity was adjusted to a 1 modifcations as described as follow. AgNO3 (Merck) was McFarland scale by densitometer (DEN-1 densitometer, dissolved in ethanol absolute (Ciccarelli) under ultra- Biosan). Tis inoculum was diluted 1:100 in supple- sound stirring. Ethanol was used as solvent and also as a mented RPMI medium to achieve a fnal concentration of 5 mild reducing agent. On the other hand, the aminosilane 0.5–2.5 × 10 CFU/mL. Mussin et al. AMB Expr (2019) 9:131 Page 3 of 9 AgNP and KTZ solutions were prepared using dime- a fungi is inhibited but not killed by an antifungal agent thyl sulfoxide (DMSO) as solvent (fnal concentration that normally is considered fungicidal, defned by a MFC/ ≤ 1%) and RPMI medium as
Recommended publications
  • (Schizotrypanum) Cruzi in Dog Hosts Paulo Marcos Da Matta Guedes,1 Julio A
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Nov. 2004, p. 4286–4292 Vol. 48, No. 11 0066-4804/04/$08.00ϩ0 DOI: 10.1128/AAC.48.11.4286–4292.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved. Activity of the New Triazole Derivative Albaconazole against Trypanosoma (Schizotrypanum) cruzi in Dog Hosts Paulo Marcos da Matta Guedes,1 Julio A. Urbina,2 Marta de Lana,3 Luis C. C. Afonso,1 Vanja M. Veloso,1 Washington L. Tafuri,1 George L. L. Machado-Coelho,4 Egler Chiari,5 and Maria Terezinha Bahia1* Departamento de Cieˆncias Biolo´gicas,1 Departamento de Ana´lises Clínicas,3 and Departamento de Farma´cia,4 Universidade Federal de Ouro Preto, Ouro Preto, and Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte,5 Minas Gerais, Brazil, and Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela2 Received 25 March 2004/Returned for modification 8 June 2004/Accepted 20 July 2004 Albaconazole is an experimental triazole derivative with potent and broad-spectrum antifungal activity and a remarkably long half-life in dogs, monkeys, and humans. In the present work, we investigated the in vivo activity of this compound against two strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi, the causative agent of Chagas’ disease, using dogs as hosts. The T. cruzi strains used in the study were previously characterized (murine model) as susceptible (strain Berenice-78) and partially resistant (strain Y) to the drugs currently in clinical use, nifurtimox and benznidazole. Our results demonstrated that albaconazole is very effective in suppressing the proliferation of the parasite and preventing the death of infected animals.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • WO 2014/195872 Al 11 December 2014 (11.12.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/195872 Al 11 December 2014 (11.12.2014) P O P C T (51) International Patent Classification: (74) Agents: CHOTIA, Meenakshi et al; K&S Partners | Intel A 25/12 (2006.01) A61K 8/11 (2006.01) lectual Property Attorneys, 4121/B, 6th Cross, 19A Main, A 25/34 (2006.01) A61K 8/49 (2006.01) HAL II Stage (Extension), Bangalore 560038 (IN). A01N 37/06 (2006.01) A61Q 5/00 (2006.01) (81) Designated States (unless otherwise indicated, for every A O 43/12 (2006.01) A61K 31/44 (2006.01) kind of national protection available): AE, AG, AL, AM, AO 43/40 (2006.01) A61Q 19/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A01N 57/12 (2006.01) A61K 9/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, AOm 59/16 (2006.01) A61K 31/496 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/IB20 14/06 1925 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 3 June 2014 (03.06.2014) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • A Ketoconazole Susceptibility Test for Malassezia Pachydermatis Using Modified Leeming–Notman Agar
    Journal of Fungi Article A Ketoconazole Susceptibility Test for Malassezia pachydermatis Using Modified Leeming–Notman Agar Bo-Young Hsieh 1,2, Wei-Hsun Chao 3, Yi-Jing Xue 2 and Jyh-Mirn Lai 2,* 1 Lugu Township Administration, Nanto County 55844, Taiwan; [email protected] 2 College of Veterinary Medicine, National Chiayi University, No. 580, XinMin Rd., Chiayi City 60054, Taiwan; [email protected] 3 Department of Hospitality Management, WuFung University, Chiayi City 60054, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-5-2732920; Fax: +886-5-2732917 Received: 18 September 2018; Accepted: 14 November 2018; Published: 16 November 2018 Abstract: The aim of this study was to establish a ketoconazole susceptibility test for Malassezia pachydermatis using modified Leeming–Notman agar (mLNA). The susceptibilities of 33 M. pachydermatis isolates obtained by modified CLSI M27-A3 method were compared with the results by disk diffusion method, which used different concentrations of ketoconazole on 6 mm diameter paper disks. Results showed that 93.9% (31/33) of the minimum inhibitory concentration (MIC) values obtained from both methods were similar (consistent with two methods within 2 dilutions). M. pachydermatis BCRC 21676 and Candida parapsilosis ATCC 22019 were used to verify the results obtained from the disk diffusion and modified CLSI M27-A3 tests, and they were found to be consistent. Therefore, the current study concludes that this new novel test—using different concentrations of reagents on cartridge disks to detect MIC values against ketoconazole—can be a cost-effective, time-efficient, and less technically demanding alternative to existing methods.
    [Show full text]
  • WO 2015/134796 Al 11 September 2015 (11.09.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/134796 Al 11 September 2015 (11.09.2015) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 9/14 (2006.01) A61K 47/10 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 9/16 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/0 19042 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 5 March 2015 (05.03.2015) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 61/948,173 5 March 2014 (05.03.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 14/307,138 17 June 2014 (17.06.2014) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: PROFESSIONAL COMPOUNDING CEN¬ LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, TERS OF AMERICA [US/US]; 9901 South Wilcrest SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Drive, Houston, TX 77099 (US).
    [Show full text]
  • WO 2018/102407 Al 07 June 2018 (07.06.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/102407 Al 07 June 2018 (07.06.2018) W !P O PCT (51) International Patent Classification: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, C07K 7/60 (2006.01) G01N 33/53 (2006.01) EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, CI2Q 1/18 (2006.01) MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (21) International Application Number: KM, ML, MR, NE, SN, TD, TG). PCT/US2017/063696 (22) International Filing Date: Published: 29 November 201 7 (29. 11.201 7) — with international search report (Art. 21(3)) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/427,507 29 November 2016 (29. 11.2016) US 62/484,696 12 April 2017 (12.04.2017) US 62/53 1,767 12 July 2017 (12.07.2017) US 62/541,474 04 August 2017 (04.08.2017) US 62/566,947 02 October 2017 (02.10.2017) US 62/578,877 30 October 2017 (30.10.2017) US (71) Applicant: CIDARA THERAPEUTICS, INC [US/US]; 63 10 Nancy Ridge Drive, Suite 101, San Diego, CA 92121 (US). (72) Inventors: BARTIZAL, Kenneth; 7520 Draper Avenue, Unit 5, La Jolla, CA 92037 (US). DARUWALA, Paul; 1141 Luneta Drive, Del Mar, CA 92014 (US). FORREST, Kevin; 13864 Boquita Drive, Del Mar, CA 92014 (US).
    [Show full text]
  • Antifungal Reference Materials
    Antifungal reference materials Antifungal (antimycotic) agents These infections can be potentially lethal in are used for prophylaxis and immunocompromised patients such as those with HIV/AIDS or transplant recipients taking treatment of fungal, yeast and medications to suppress their immune system. mould infections. These can range The successful management of invasive from superficial infections including fungal infections poses a difficult challenge to athlete’s foot, ringworm, vaginal clinicians. Antifungal agents have important thrush and fungal nail infections, limitations in their spectrum of activity and can be associated with unpredictable bioavailability, through to the more serious significant pharmacokinetic variability, intolerance, invasive infections such as systemic considerable acute and chronic toxicity and candidiasis, pulmonary aspergillosis potential for drug-drug interactions. Therapeutic and cryptococcal meningitis. Drug Monitoring can assist in optimising the efficacy and safety of certain antifungal therapy. LGC now offer an extensive range of antifungal agents. LGC Quality - ISO Guide 34 • GMP/GLP • ISO 9001 • ISO/IEC 17025 • ISO/IEC 17043 Reference materials Product code Description Unit 1 Unit 2 Imidazoles TRC-B690273 Butoconazole Nitrate 10 mg 100 mg TRC-B690272 Butoconazole (rac)-d5 Nitrate 1 mg 10 mg LGCFOR0015.00 Clotrimazole 10 mg TRC-C587402 Clotrimazole-d5 1 mg 10 mg LGCFOR0524.00 Econazole Nitrate 10 mg TRC-F279250 Fenticonazole Nitrate 100 mg 1 g LGCFOR0541.00 Isoconazole Nitrate 10 mg LGCFOR0145.00
    [Show full text]
  • New-Generation Triazole Antifungal Drugs: Review of the Phase II and III Trials
    Review: Clinical Trial Outcomes New-generation triazole antifungal drugs: review of the Phase II and III trials Clin. Invest. (2011) 1(11), 1577–1594 In this article, the pharmacological, microbiological and clinical development Corrado Girmenia†1 & Erica Finolezzi1 progress from Phase II and III clinical trials with the new generation triazoles 1Dipartimento di Ematologia, Oncologia, albaconazole, isavuconazole, posaconazole, ravuconazole and voriconazole Anatomia Patologica & Medicina Rigenerativa, are reviewed. These drugs exhibit a favorable toxicity profile and possess high Azienda Policlinico Umberto I, Via Benevento 6, activity against resistant and emerging fungal pathogens. Pharmacokinetic 00161, Rome, Italy †Author for correspondence: may be affected by variability in metabolism and/or gastrointestinal Tel.: +39 0685 7951 absorption. Only voriconazole and posaconazole have been adequately Fax: +39 0644 241 984 investigated and are now indicated in the treatment and prophylaxis of E-mail: [email protected] invasive fungal diseases. Other triazoles; albaconazole, isavuconazole and ravuconazole are under development; therefore, their future use is unknown. Keywords: albaconazole • antifungal prophylaxis • antifungal therapy • isavuconazole • Phase II and III trials • posaconazole • ravuconazole • triazoles • voriconazole Opportunistic invasive fungal diseases (IFDs) are a major cause of morbidity and mortality in immunocompromised patients, particularly those affected by hematological diseases and cancer, and those undergoing transplant procedures or prolonged immunosuppressive therapy. Considerable progress in treating systemic mycoses has been achieved in recent years through better use of old antifungal agents and through development of new drugs in association with more advanced diagnostic procedures. The search for new antifungal strategies has been mainly focused on the reduction of toxicity, enhancement of bioavailability, improvement of the antifungal spectrum and counteraction of resistance.
    [Show full text]
  • Clinical Manifestations, Treatment and Outcome of Paecilomyces Lilacinus Infections F
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW 10.1111/j.1469-0691.2006.01481.x Clinical manifestations, treatment and outcome of Paecilomyces lilacinus infections F. J. Pastor and J. Guarro Unitat de Microbiologia, Facultat de Medicina I Cie`ncies de la Salut, Universitat Rovira i Virgili, Reus, Spain ABSTRACT The fungus Paecilomyces lilacinus is an emerging pathogen that causes severe human infections, including devastating oculomycosis. Usually, it shows low susceptibility to conventional antifungal drugs in vitro, and variable susceptibility to novel triazoles. A review of the published literature identified 119 reported cases of human infection by P. lilacinus between 1964 and 2004. Most were cases of oculomycosis (51.3%), followed by cutaneous and sub-cutaneous infections (35.3%), and a smaller group of miscellaneous infections (13.4%). Lens implantation is the most frequent predisposing factor for oculomycosis. Cutaneous and sub-cutaneous infections occur mainly in solid organ and bone marrow transplant recipients, although surgery and primary or acquired immunodeficiency are also relevant predisposing factors. Infections in apparently immunocompetent patients have also been reported. Surgical debride- ment combined with antifungal drug therapy, or the correction of predisposing factors, such as neutropenia, are usually required to obtain improvement. Treatment with traditional antifungal drugs often fails. Voriconazole has demonstrated good activity in both cutaneous and ocular infections in the few cases in which this drug has been used. The new triazoles ravuconazole and posaconazole show good in- vitro activity against P. lilacinus and could be promising therapeutic alternatives. Keywords Fungal infections, oculomycosis, Paecilomyces lilacinus, review, risk-factors, voriconazole Accepted: 1 December 2005 Clin Microbiol Infect 2006; 12: 948–960 Paecilomyces is a hyaline hyphomycete that INTRODUCTION exists worldwide.
    [Show full text]
  • Recent Developments in Antifungal Agents
    International Journal of Pharmacy and Pharmaceutical Sciences Academic Sciences ISSN- 0975-1491 Vol 4, Suppl 4, 2012 Review Article RECENT DEVELOPMENTS IN ANTIFUNGAL AGENTS 1SMITA TALAVIYA, 2FALGUNI MAJMUDAR *1Department of Pharmaceutical Chemistry, K. B. Raval College of Pharmacy, Gandhinagar, Gujarat, 2Department of Pharmacology, Smt. N.H.L. Municipal Medical College, Ahmedabad, Gujarat, India. Email: [email protected] Received: 23 Feb 2012, Revised and Accepted: 30 Mar 2012 ABSTRACT Life threatening invasive fungal infections is a major problem in immunocompromised patients. Standard antifungal agents so far have been quite successful, but some of them have limited use because of toxicity and drug resistance and even their clinical efficacy in some invasive fungal infections, such as aspergillosis and fusariosis, is not optimal. Among the several widely used antifungal drugs, azoles are most frequently prescribed in various types of fungal infections. Some new antifungal agents have demonstrated therapeutic potential and may provide additional options for the treatment of fungal infections and may help to overcome the limitations of current drugs. This review briefly discusses currently available antifungal agents and primarily concerns with recent developments in antifungal agents including lipid formulation of polyenes, novel azoles, echinocandins, sordarins, nikkomycins, monoclonal antibody, aminocandin and interferon- -1b. Keywords: Antifungal agents, Newer approaches, Azoles, Echinocandins. γ INTRODUCTION for treatment of aspergillosis under optimal conditions.14 The increase in zygomycosis in the hematopoietic cell transplantation The incidences of invasive fungal infections (IFIs) have increased setting can be due to the increased use of Voriconazole.12 gravely since 1980s, worldwide, especially in the immunocompromised persons.1 IFIs are characterized by high Limited pediatric data are available comparing antifungal agents in morbidity and mortality.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • ECORFAN Journal Folliculitis by Malassezia Sp., an Epidemiological Study in Dominican Republic
    14 Article ECORFAN Journal December 2015 Vol.1 No.1 14-19 Folliculitis by Malassezia sp., An epidemiological study in Dominican Republic PORRAS-LÓPEZ, Carlos*†, COMPRES-ESPINAL, Adriana, CRUZ, Cecilia and ISA-ISA, Rafael Institute of Dermatology and Skin Surgery "Dr. Fernando Cordero C. Unit of Medical Mycology, "Guatemala City. Dominican Dermatology Institute and Skin Surgery "Prof. Dr. Hubert Bogaert Diaz. Department of Mycology, "Dominican Republic. Received April 15, 2015; Accepted November 16, 2015 Abstract Malassezia´s folliculitis is a pathology characterized by the presence of papules and pustules in which Malassezia sp. can be isolated. This is indistinguishable from Candida sp. folliculitis, acne vulgaris, acneiform reaction, and some bacterial folliculitis so it may be underdiagnosed. The objective of this study was to characterize the epidemiology of Malassezia folliculitis through a retrospective cross- sectional study from 2009 to 2012 at the Institute Dermatological and Skin Surgery "Prof. Dr. Hubert Bogaert ", Dominican Republic. It was observed that the disease is more common in women, the most prevalent age group is 21 to 30 years, concomitant pathology is more often associated with tinea versicolor, the evolution time is less than 1 year, the most often associated site is the back. The use of Gram stain and culture is recommended to fully establish the diagnosis. Malassezia sp., Gram stain, folliculitis. Citation: PORRAS-PORRAS, Carlos, Adriana, CRUZ, Cecilia and ISA-ISA, Rafael. Folliculitis by Malassezia sp., An epidemiological study in Dominican Republic. ECORFAN Journal-Republic of Guatemala 2015, 1-1: 14-19 * Correspondence to Author (email: [email protected]) † Researcher contributing first author. © ECORFAN Journal - Republic of Guatemala www.ecorfan.org/republicofguatemala 15 Article ECORFAN Journal December 2015 Vol.1 No.1 14-19 Introduction The presence of Malassezia in pustular lesions can be demonstrated using KOH 10% of Malassezia folliculitis is a pathology chlorazol black, white calcoflour or Gram stain.
    [Show full text]