Mathematical Software Tools Applicable to Remote Learning and Scientific Research in Case of Isolation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Developing Scientific Computing Software: Current Processes And
DEVELOPING: SGIENffl&Pifli|ii^Mp| CURRENT PROCESSES" WMWiiiiia DEVELOPING SCIENTIFIC COMPUTING SOFTWARE MASTER OF APPLIED SCIENCE(2008) McMaster University COMPUTING AND SOFTWARE Hamilton, Ontario TITLE: Developing Scientific Computing Software: Current Processes and Future Directions AUTHOR: Jin Tang, M.M. (Nanjing University) SUPERVISOR: Dr. Spencer Smith NUMBER OF PAGERS: xxii, 216 n Abstract Considerable emphasis in scientific computing (SC) software development has been placed on the software qualities of performance and correctness. How ever, other software qualities have received less attention, such as the qualities of usability, maintainability, testability and reusability. Presented in this work is a survey titled "Survey on Developing Scien tific Computing Software, which is apparently the first conducted to explore the current approaches to SC software development and to determine which qualities of SC software are in most need of improvement. From the survey. we found that systematic development process is frequently not adopted in the SC software community, since 58% of respondents mentioned that their entire development process potentially consists only of coding and debugging. Moreover, semi-formal and formal specification is rarely used when developing SC software, which is suggested by the fact that 70% of respondents indicate that they only use informal specification. In terms of the problems in SC software development, which are dis covered by analyzing the survey results, a solution is proposed to improve the quality of SC software by using SE methodologies, concretely, using a modified Parnas' Rational Design Process (PRDP) and the Unified Software Development Process (USDP). A comparison of the two candidate processes is provided to help SC software practitioners determine which of the two pro cesses fits their particular situation. -
The Guide to Available Mathematical Software Problem Classification System
The Guide to Available Mathematical Software Problem Classification System Ronald F. Boisvert, Sally E. Howe and David K. Kahaner November 1990 U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, MD 20899 100 U56 //4475 1990 C.2 NATIONAL, INSrrnJTE OF STANDARDS & TECHNOLOGY / THE GUIDE TO AVAILABLE MATHEMATICAL SOFTWARE PROBLEM CLASSIFICATION SYSTEM Ronald F. Boisvert Sally E. Howe David K. Kahaner U.S. DEPARTMENT OF COMMERCE National InstHute of Standards and Technology Center for Computing and Applied Mathematics Gaithersburg, MO 20899 November 1990 U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director 2 Boisvert, Howe and Kahaner own manuals or on-line documentation system. In order to determine what software is avail- able to solve a particular problem, users must search through a very large, heterogeneous collection of information. This is a tedious and error-prone process. As a result, there has been much interest in the development of automated advisory systems to help users select software. Keyword search is a popular technique used for this purpose. In such a system keywords or phrases are assigned to each piece of software to succinctly define its purpose, and the set of aU such keywords axe entered into a database. Keyword-based selection systems query users for a set of keywords and then present a fist of software modules which contain them. A major difficulty with such systems is that users often have trouble in providing the appropriate keywords for a given mathematical or statistical problem. There is such a wealth of alternate mathematical and statistical terminology that it would be a rare occurrence for two separate knowledgeable persons to assign the same set of keywords to a given software module. -
A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya 1 Introduction
A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya Sai K. Popuri and Matthias K. Gobbert* Department of Mathematics and Statistics, University of Maryland, Baltimore County *Corresponding author: [email protected], www.umbc.edu/~gobbert Technical Report HPCF{2017{3, hpcf.umbc.edu > Publications Abstract Matlab is the most popular commercial package for numerical computations in mathematics, statistics, the sciences, engineering, and other fields. Octave is a freely available software used for numerical computing. R is a popular open source freely available software often used for statistical analysis and computing. Julia is a recent open source freely available high-level programming language with a sophisticated com- piler for high-performance numerical and statistical computing. They are all available to download on the Linux, Windows, and Mac OS X operating systems. We investigate whether the three freely available software are viable alternatives to Matlab for uses in research and teaching. We compare the results on part of the equipment of the cluster maya in the UMBC High Performance Computing Facility. The equipment has 72 nodes, each with two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) proces- sors with 8 cores per CPU, for a total of 16 cores per node. All nodes have 64 GB of main memory and are connected by a quad-data rate InfiniBand interconnect. The tests focused on usability lead us to conclude that Octave is the most compatible with Matlab, since it uses the same syntax and has the native capability of running m-files. R was hampered by somewhat different syntax or function names and some missing functions. -
Some Reflections About the Success and Impact of the Computer Algebra System DERIVE with a 10-Year Time Perspective
Noname manuscript No. (will be inserted by the editor) Some reflections about the success and impact of the computer algebra system DERIVE with a 10-year time perspective Eugenio Roanes-Lozano · Jose Luis Gal´an-Garc´ıa · Carmen Solano-Mac´ıas Received: date / Accepted: date Abstract The computer algebra system DERIVE had a very important im- pact in teaching mathematics with technology, mainly in the 1990's. The au- thors analyze the possible reasons for its success and impact and give personal conclusions based on the facts collected. More than 10 years after it was discon- tinued it is still used for teaching and several scientific papers (most devoted to educational issues) still refer to it. A summary of the history, journals and conferences together with a brief bibliographic analysis are included. Keywords Computer algebra systems · DERIVE · educational software · symbolic computation · technology in mathematics education Eugenio Roanes-Lozano Instituto de Matem´aticaInterdisciplinar & Departamento de Did´actica de las Ciencias Experimentales, Sociales y Matem´aticas, Facultad de Educaci´on,Universidad Complutense de Madrid, c/ Rector Royo Villanova s/n, 28040-Madrid, Spain Tel.: +34-91-3946248 Fax: +34-91-3946133 E-mail: [email protected] Jose Luis Gal´an-Garc´ıa Departamento de Matem´atica Aplicada, Universidad de M´alaga, M´alaga, c/ Dr. Ortiz Ramos s/n. Campus de Teatinos, E{29071 M´alaga,Spain Tel.: +34-952-132873 Fax: +34-952-132766 E-mail: [email protected] Carmen Solano-Mac´ıas Departamento de Informaci´ony Comunicaci´on,Universidad de Extremadura, Plaza de Ibn Marwan s/n, 06001-Badajoz, Spain Tel.: +34-924-286400 Fax: +34-924-286401 E-mail: [email protected] 2 Eugenio Roanes-Lozano et al. -
Redberry: a Computer Algebra System Designed for Tensor Manipulation
Redberry: a computer algebra system designed for tensor manipulation Stanislav Poslavsky Institute for High Energy Physics, Protvino, Russia SRRC RF ITEP of NRC Kurchatov Institute, Moscow, Russia E-mail: [email protected] Dmitry Bolotin Institute of Bioorganic Chemistry of RAS, Moscow, Russia E-mail: [email protected] Abstract. In this paper we focus on the main aspects of computer-aided calculations with tensors and present a new computer algebra system Redberry which was specifically designed for algebraic tensor manipulation. We touch upon distinctive features of tensor software in comparison with pure scalar systems, discuss the main approaches used to handle tensorial expressions and present the comparison of Redberry performance with other relevant tools. 1. Introduction General-purpose computer algebra systems (CASs) have become an essential part of many scientific calculations. Focusing on the area of theoretical physics and particularly high energy physics, one can note that there is a wide area of problems that deal with tensors (or more generally | objects with indices). This work is devoted to the algebraic manipulations with abstract indexed expressions which forms a substantial part of computer aided calculations with tensors in this field of science. Today, there are many packages both on top of general-purpose systems (Maple Physics [1], xAct [2], Tensorial etc.) and standalone tools (Cadabra [3,4], SymPy [5], Reduce [6] etc.) that cover different topics in symbolic tensor calculus. However, it cannot be said that current demand on such a software is fully satisfied [7]. The main difference of tensorial expressions (in comparison with ordinary indexless) lies in the presence of contractions between indices. -
A Comparison of Six Numerical Software Packages for Educational Use in the Chemical Engineering Curriculum
SESSION 2520 A COMPARISON OF SIX NUMERICAL SOFTWARE PACKAGES FOR EDUCATIONAL USE IN THE CHEMICAL ENGINEERING CURRICULUM Mordechai Shacham Department of Chemical Engineering Ben-Gurion University of the Negev P. O. Box 653 Beer Sheva 84105, Israel Tel: (972) 7-6461481 Fax: (972) 7-6472916 E-mail: [email protected] Michael B. Cutlip Department of Chemical Engineering University of Connecticut Box U-222 Storrs, CT 06269-3222 Tel: (860)486-0321 Fax: (860)486-2959 E-mail: [email protected] INTRODUCTION Until the early 1980’s, computer use in Chemical Engineering Education involved mainly FORTRAN and less frequently CSMP programming. A typical com- puter assignment in that era would require the student to carry out the following tasks: 1.) Derive the model equations for the problem at hand, 2.) Find an appropri- ate numerical method to solve the model (mostly NLE’s or ODE’s), 3.) Write and debug a FORTRAN program to solve the problem using the selected numerical algo- rithm, and 4.) Analyze the results for validity and precision. It was soon recognized that the second and third tasks of the solution were minor contributions to the learning of the subject material in most chemical engi- neering courses, but they were actually the most time consuming and frustrating parts of computer assignments. The computer indeed enabled the students to solve realistic problems, but the time spent on technical details which were of minor rele- vance to the subject matter was much too long. In order to solve this difficulty, there was a tendency to provide the students with computer programs that could solve one particular type of a problem. -
Software for Numerical Computation
Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 1977 Software for Numerical Computation John R. Rice Purdue University, [email protected] Report Number: 77-214 Rice, John R., "Software for Numerical Computation" (1977). Department of Computer Science Technical Reports. Paper 154. https://docs.lib.purdue.edu/cstech/154 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. SOFTWARE FOR NUMERICAL COMPUTATION John R. Rice Department of Computer Sciences Purdue University West Lafayette, IN 47907 CSD TR #214 January 1977 SOFTWARE FOR NUMERICAL COMPUTATION John R. Rice Mathematical Sciences Purdue University CSD-TR 214 January 12, 1977 Article to appear in the book: Research Directions in Software Technology. SOFTWARE FOR NUMERICAL COMPUTATION John R. Rice Mathematical Sciences Purdue University INTRODUCTION AND MOTIVATING PROBLEMS. The purpose of this article is to examine the research developments in software for numerical computation. Research and development of numerical methods is not intended to be discussed for two reasons. First, a reasonable survey of the research in numerical methods would require a book. The COSERS report [Rice et al, 1977] on Numerical Computation does such a survey in about 100 printed pages and even so the discussion of many important fields (never mind topics) is limited to a few paragraphs. Second, the present book is focused on software and thus it is natural to attempt to separate software research from numerical computation research. This, of course, is not easy as the two are intimately intertwined. -
Rapid Research with Computer Algebra Systems
doi: 10.21495/71-0-109 25th International Conference ENGINEERING MECHANICS 2019 Svratka, Czech Republic, 13 – 16 May 2019 RAPID RESEARCH WITH COMPUTER ALGEBRA SYSTEMS C. Fischer* Abstract: Computer algebra systems (CAS) are gaining popularity not only among young students and schol- ars but also as a tool for serious work. These highly complicated software systems, which used to just be regarded as toys for computer enthusiasts, have reached maturity. Nowadays such systems are available on a variety of computer platforms, starting from freely-available on-line services up to complex and expensive software packages. The aim of this review paper is to show some selected capabilities of CAS and point out some problems with their usage from the point of view of 25 years of experience. Keywords: Computer algebra system, Methodology, Wolfram Mathematica 1. Introduction The Wikipedia page (Wikipedia contributors, 2019a) defines CAS as a package comprising a set of algo- rithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language. There are 35 different systems listed on the page, four of them discontinued. The oldest one, Reduce, was publicly released in 1968 (Hearn, 2005) and is still available as an open-source project. Maple (2019a) is among the most popular CAS. It was first publicly released in 1984 (Maple, 2019b) and is still popular, also among users in the Czech Republic. PTC Mathcad (2019) was published in 1986 in DOS as an engineering calculation solution, and gained popularity for its ability to work with typeset mathematical notation in combination with automatic computations. -
CAS (Computer Algebra System) Mathematica
CAS (Computer Algebra System) Mathematica- UML students can download a copy for free as part of the UML site license; see the course website for details From: Wikipedia 2/9/2014 A computer algebra system (CAS) is a software program that allows [one] to compute with mathematical expressions in a way which is similar to the traditional handwritten computations of the mathematicians and other scientists. The main ones are Axiom, Magma, Maple, Mathematica and Sage (the latter includes several computer algebras systems, such as Macsyma and SymPy). Computer algebra systems began to appear in the 1960s, and evolved out of two quite different sources—the requirements of theoretical physicists and research into artificial intelligence. A prime example for the first development was the pioneering work conducted by the later Nobel Prize laureate in physics Martin Veltman, who designed a program for symbolic mathematics, especially High Energy Physics, called Schoonschip (Dutch for "clean ship") in 1963. Using LISP as the programming basis, Carl Engelman created MATHLAB in 1964 at MITRE within an artificial intelligence research environment. Later MATHLAB was made available to users on PDP-6 and PDP-10 Systems running TOPS-10 or TENEX in universities. Today it can still be used on SIMH-Emulations of the PDP-10. MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory") which is a system for numerical computation built 15 years later at the University of New Mexico, accidentally named rather similarly. The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a popular copyleft version of Macsyma called Maxima is actively being maintained. -
Books About Computing Tools
Books about Programming and Computing Tools Separate Section of: Books about Computing, Programming, Algorithms, and Software Development Collection of References edited by Stanislav Sýkora Permalink via DOI: 10.3247/SL6Refs16.001 Stan's LIBRARY and its Programming Section Extra Byte | Stan's HUB Free online texts Forward a missing book reference Site Plan & SEARCH This growing compilation includes titles yet to be released (they have a month specified in the release date). The entries are sorted by publication year and the first Author. Green-color titles indicate educational texts. You can download a PDF version of this document for off-line use. But keep coming back, the list is growing! Many of the books are available from Amazon. Entering Amazon from here helps this site at no cost to you. F Other Lists: Popular Science F Mathematics F Physics F Chemistry Visitor # Patents+IP F Electronics | DSP | Tinkering F Computing Spintronics F Materials ADVERTISE with us WWW issues F Instruments / Measurements Quantum Computing F NMR | ESR | MRI F Spectroscopy Extra Byte Hint: the F symbols above, where present, are links to free online texts (books, courses, theses, ...) Advance notices (years ≥ 2016) and, at page bottom, Related Works: Link Directories: SCIENCE | Edu+Fun 1. Garvan Frank, MATH | COMPUTING The Maple Book, PHYSICS | CHEMISTRY 2nd Edition, Chapman and Hall/CRC, February 2016. ISBN 978-1439898286. Hardcover >>. NMR-MRI-ESR-NQR 2. Green Dale, ELECTRONICS Procedural Content Generation for C++ Game Development, PATENTS+IP Packt Publishing, March 2016. Kindle >>. WWW stuff 3. Guido Sarah, Introduction to Machine Learning with Python, Other resources: O'Reilly Media, January 2016. -
Computer Algebra Tems
short and expensive. Consequently, computer centre managers were not easily persuaded to install such sys Computer Algebra tems. This is another reason why many specialized CAS have been developed in many different institutions. From the Jacques Calmet, Grenoble * very beginning it was felt that the (UFIA / INPG) breakthrough of Computer Algebra is linked to the availability of adequate computers: several megabytes of main As soon as computers became avai handling of very large pieces of algebra memory and very large capacity disks. lable the wish to manipulate symbols which would be hopeless without com Since the advent of the VAX's and the rather than numbers was considered. puter aid, the possibility to get insight personal workstations, this era is open This resulted in what is called symbolic into a calculation, to experiment ideas ed and indeed the use of CAS is computing. The sub-field of symbolic interactively and to save time for less spreading very quickly. computing which deals with the sym technical problems. When compared to What are the main CAS of possible bolic solution of mathematical problems numerical computing, it is also much interest to physicists? A fairly balanced is known today as Computer Algebra. closer to human reasoning. answer is to quote MACSYMA, RE The discipline was rapidly organized, in DUCE, SMP, MAPLE among the general 1962, by a special interest group on Computer Algebra Systems purpose ones and SCHOONSHIP, symbolic and algebraic manipulation, Computer Algebra systems may be SHEEP and CAYLEY among the specia SIGSAM, of the Association for Com classified into two different categories: lized ones. -
Freemat V3.6 Documentation
FreeMat v3.6 Documentation Samit Basu November 16, 2008 2 Contents 1 Introduction and Getting Started 5 1.1 INSTALL Installing FreeMat . 5 1.1.1 General Instructions . 5 1.1.2 Linux . 5 1.1.3 Windows . 6 1.1.4 Mac OS X . 6 1.1.5 Source Code . 6 2 Variables and Arrays 7 2.1 CELL Cell Array Definitions . 7 2.1.1 Usage . 7 2.1.2 Examples . 7 2.2 Function Handles . 8 2.2.1 Usage . 8 2.3 GLOBAL Global Variables . 8 2.3.1 Usage . 8 2.3.2 Example . 9 2.4 INDEXING Indexing Expressions . 9 2.4.1 Usage . 9 2.4.2 Array Indexing . 9 2.4.3 Cell Indexing . 13 2.4.4 Structure Indexing . 14 2.4.5 Complex Indexing . 16 2.5 MATRIX Matrix Definitions . 17 2.5.1 Usage . 17 2.5.2 Examples . 17 2.6 PERSISTENT Persistent Variables . 19 2.6.1 Usage . 19 2.6.2 Example . 19 2.7 STRING String Arrays . 20 2.7.1 Usage . 20 2.8 STRUCT Structure Array Constructor . 22 2.8.1 Usage . 22 2.8.2 Example . 22 3 4 CONTENTS 3 Functions and Scripts 25 3.1 ANONYMOUS Anonymous Functions . 25 3.1.1 Usage . 25 3.1.2 Examples . 25 3.2 FUNCTION Function Declarations . 26 3.2.1 Usage . 26 3.2.2 Examples . 28 3.3 KEYWORDS Function Keywords . 30 3.3.1 Usage . 30 3.3.2 Example . 31 3.4 NARGIN Number of Input Arguments . 32 3.4.1 Usage .