American Penstemon Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Guide for Rocky Mountain Penstemon
Natural Resources Conservation Service Plant Guide ROCKY MOUNTAIN Ornamental: The beautiful flowers and evergreen basal leaves of Rocky Mountain penstemon make it attractive PENSTEMON for ornamental and landscape planting (Smith, et. al., 2009). Rocky Mountain penstemon has been identified as Penstemon strictus Benth. a compatible and beneficial companion plant to grow Plant Symbol = PEST2 along with several paintbrush (Castilleja) species for ornamental applications (Nelson, 2005). Paintbrush plants require a companion plant to serve as host for its semi-parasitic needs. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description General: Rocky Mountain penstemon, a member of the Figwort family (Schrophulariaceae) is a semi-evergreen, native, perennial forb with fibrous roots and is 35-70 cm tall. Plants are mostly glabrous and the leaves are entire. Basal and lower leaves are 5-15 cm long, 5-16 mm wide, narrowly oblanceolate, rounded at the tip and tapering to the base. The upper leaves are 4-10 cm long, 2-7 mm wide, linear and often folded. The flower stalks have a whorl of 1 or 2 flowers (sometimes 4) at each node. The sepals are 3-5 mm long, glabrous and ovate or rounded to obtuse and are glabrous. The petals are 24-32 mm long and the flower tube is 6-10 mm long, deep blue in color with a whitish color at the opening and often with red- violet lines inside the throat and sparsely bearded to sometimes glabrous. -
Fall 2013 NARGS
Rock Garden uar terly � Fall 2013 NARGS to ADVERtISE IN thE QuARtERly CoNtACt [email protected] Let me know what yo think A recent issue of a chapter newsletter had an item entitled “News from NARGS”. There were comments on various issues related to the new NARGS website, not all complimentary, and then it turned to the Quarterly online and raised some points about which I would be very pleased to have your views. “The good news is that all the Quarterlies are online and can easily be dowloaded. The older issues are easy to read except for some rather pale type but this may be the result of scanning. There is amazing information in these older issues. The last three years of the Quarterly are also online but you must be a member to read them. These last issues are on Allen Press’s BrightCopy and I find them harder to read than a pdf file. Also the last issue of the Quarterly has 60 extra pages only available online. Personally I find this objectionable as I prefer all my content in a printed bulletin.” This raises two points: Readability of BrightCopy issues versus PDF issues Do you find the BrightCopy issues as good as the PDF issues? Inclusion of extra material in online editions only. Do you object to having extra material in the online edition which can not be included in the printed edition? Please take a moment to email me with your views Malcolm McGregor <[email protected]> CONTRIBUTORS All illustrations are by the authors of articles unless otherwise stated. -
Alplains 2013 Seed Catalog P.O
ALPLAINS 2013 SEED CATALOG P.O. BOX 489, KIOWA, CO 80117-0489, U.S.A. Three ways to contact us: FAX: (303) 621-2864 (24 HRS.) email: [email protected] website: www.alplains.com Dear Growing Friends: Welcome to our 23rd annual seed catalog! The summer of 2012 was long, hot and brutal, with drought afflicting most of the U.S. Most of my botanical explorations were restricted to Idaho, Wash- ington, Oregon and northern California but even there moisture was below average. In a year like this, seeps, swales, springs, vestigial snowbanks and localized rainstorms became much more important in my search for seeding plants. On the Snake River Plains of southern Idaho and the scab- lands of eastern Washington, early bloomers such as Viola beckwithii, V. trinervata, Ranunculus glaberrimus, Ranunculus andersonii, Fritillaria pudica and Primula cusickiana put on quite a show in mid-April but many populations could not set seed. In northern Idaho, Erythronium idahoense flowered extensively, whole meadows were covered with thousands of the creamy, pendant blossoms. One of my most satisfying finds in the Hells Canyon area had to be Sedum valens. The tiny glaucous rosettes, surround- ed by a ring of red leaves, are a succulent connoisseur’s dream. Higher up, the brilliant blue spikes of Synthyris missurica punctuated the canyon walls. In southern Oregon, the brilliant red spikes of Pedicularis densiflora lit up the Siskiyou forest floor. Further north in Oregon, large populations of Erythronium elegans, Erythronium oregonum ssp. leucandrum, Erythro- nium revolutum, trilliums and sedums provided wonderful picture-taking opportunities. Eriogonum species did well despite the drought, many of them true xerics. -
Native Or Suitable Plants City of Mccall
Native or Suitable Plants City of McCall The following list of plants is presented to assist the developer, business owner, or homeowner in selecting plants for landscaping. The list is by no means complete, but is a recommended selection of plants which are either native or have been successfully introduced to our area. Successful landscaping, however, requires much more than just the selection of plants. Unless you have some experience, it is suggested than you employ the services of a trained or otherwise experienced landscaper, arborist, or forester. For best results it is recommended that careful consideration be made in purchasing the plants from the local nurseries (i.e. Cascade, McCall, and New Meadows). Plants brought in from the Treasure Valley may not survive our local weather conditions, microsites, and higher elevations. Timing can also be a serious consideration as the plants may have already broken dormancy and can be damaged by our late frosts. Appendix B SELECTED IDAHO NATIVE PLANTS SUITABLE FOR VALLEY COUNTY GROWING CONDITIONS Trees & Shrubs Acer circinatum (Vine Maple). Shrub or small tree 15-20' tall, Pacific Northwest native. Bright scarlet-orange fall foliage. Excellent ornamental. Alnus incana (Mountain Alder). A large shrub, useful for mid to high elevation riparian plantings. Good plant for stream bank shelter and stabilization. Nitrogen fixing root system. Alnus sinuata (Sitka Alder). A shrub, 6-1 5' tall. Grows well on moist slopes or stream banks. Excellent shrub for erosion control and riparian restoration. Nitrogen fixing root system. Amelanchier alnifolia (Serviceberry). One of the earlier shrubs to blossom out in the spring. -
December 2012 Number 1
Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada. -
Developing Computational Tools for Evolutionary Inferences in Polyploids
Developing Computational Tools for Evolutionary Inferences in Polyploids Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Paul David Blischak, B.Sc. Graduate Program in Evolution, Ecology, and Organismal Biology The Ohio State University 2018 Dissertation Committee: Andrea D. Wolfe, Advisor Bryan C. Carstens John V. Freudenstein Laura S. Kubatko © Copyright by Paul David Blischak 2018 Abstract Methods for generating genome-scale data sets are facilitating the inference of phyloge- netic relationships in non-model taxa across the Tree of Life. However, rapid speciation and heterogeneous patterns of diversification make this task difficult when gene trees have conflicting histories (e.g., from incomplete lineage sorting). For plant species in particular, additional complications arise due to the intermixing of divergent lineages through hybridization and the subsequent occurrence of whole genome duplication (WGD; i.e., allopolyploidy). Investigations regarding the evolutionary history of re- cently formed polyploids and their diploid progenitors are difficult to conduct because of problems with resolving ambiguous genotypes in the polyploids as well as analyzing species with different ploidies. The focus of my dissertation has been to develop models and bioinformatic tools for analyzing high-throughput sequencing (HTS) data collected in non-model taxa of different ploidy levels to estimate phylogenetic relationships. I am applying these tools in the plant genus Penstemon (Plantaginaceae) to infer the relationships in two groups of closely related species containing diploids, tetraploids, and hexaploids. The first chapter of my dissertation uses HTS data and a hierarchical Bayesian framework to estimate biallelic single nucleotide polymorphism (SNP) genotypes and allele frequencies in populations of any ploidy level (diploid or higher) assuming Hardy Weinberg equilibrium. -
Acid/Heavy Metal Tolerant Plants
EPA/600/R-07/114 August 2007 Mine Waste Technology Program Acid/Heavy Metal Tolerant Plants EPA/600/R-07/114 August 2007 Mine Waste Technology Program Acid/Heavy Metal Tolerant Plants By: Jay Cornish MSE Technology Applications, Inc. Mike Mansfield Advanced Technology Center Butte, Montana 59702 Under Contract No. DE-AC09-96EW96405 Through EPA IAG No. DW8993989701-0 Norma Lewis, EPA Project Manager Systems Analysis Branch National Risk Management Research Laboratory Cincinnati, Ohio 45268 This study was conducted in cooperation with U.S. Department of Energy Environmental Management Consolidated Business Center Cincinnati, Ohio 45202 National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268 Notice The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded the research described here under IAG ID. No. DW8993989701-0 through the U.S. Department of Energy (DOE) Contract DE-AC09-96EW96405. It has been subjected to the Agency’s peer and administrative review and has been cleared for publication as an EPA document. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement or recommendation. The views and opinions of authors expressed herein do not necessarily state or reflect those of EPA or DOE, or any agency thereof. ii Foreword The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. -
Water-Wise and Native Plant Demonstration Garden
LaBonte Park’s Outdoor Learning Center Water-Wise and Native Plant Demonstration Garden This collaborative effort was undertaken in fall 2007 to showcase the wide variety of water- wise plants that can be grown in Laramie. Most are also well-adapted to other locations in the state. These drought-tolerant species can be used in naturalistic settings or in more for- mal gardens. Either way, you’ll end up with a landscape that uses less water, takes up less of your time, and looks great! Updated 8/2012 N The north side of this garden is dedicated to plants that are native to our area including the Rocky Mountains and Great Plains re- gions. Note: This map will be revised every 2-3 years. It may not be to- tally accurate when you visit but it will be close. The south side con- tains water-wise plants from the Rocky Mountain region and beyond. Water-Wise Demo Bed List of Plants (listed by map number) PERENNIALS 84. Upright prairie coneflower (red-brown form) Ratibida columnifera 3. Wild four o'clock, Mirabilis multiflora 90. Sugarbowl clematis, Clematis scottii 4. Sunset penstemon, Penstemon clutei 93. Iris (intermediate size), Iris spp. 5. Basket of Gold, Aurinia saxatilis 94. Iris, Iris spp. 6. Lambs ear ('Silver Carpet'), Stachys byzantina 95. Firecracker penstemon, Penstemon eatonii 7. Dianthus ('Firewitch'), Dianthus gratianopolitanus 96. Partridge feather, Tanacetum densum ssp. 8. Rocky Mountain penstemon, Penstemon strictus amani 9. Small-leaf pussytoes ('McClintock'), Antennaria parvi- 97. Sedum (‘Angelina’), Sedum rupestre folia 98. Yarrow (‘Moonshine’), Achillea hybrid 10. Artemisia ('Silver Brocade'), Artemisia stelleriana 99. -
Plant Guide: Rocky Mountain Penstemon
Natural Resources Conservation Service Plant Guide ROCKY MOUNTAIN Ornamental: The beautiful flowers and evergreen basal leaves of Rocky Mountain penstemon make it attractive PENSTEMON for ornamental and landscape planting (Smith, et. al., 2009). Rocky Mountain penstemon has been identified as Penstemon strictus Benth. a compatible and beneficial companion plant to grow Plant Symbol = PEST2 along with several paintbrush (Castilleja) species for ornamental applications (Nelson, 2005). Paintbrush plants require a companion plant to serve as host for its semi-parasitic needs. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description General: Rocky Mountain penstemon, a member of the Figwort family (Schrophulariaceae) is a semi-evergreen, native, perennial forb with fibrous roots and is 35-70 cm tall. Plants are mostly glabrous and the leaves are entire. Basal and lower leaves are 5-15 cm long, 5-16 mm wide, narrowly oblanceolate, rounded at the tip and tapering to the base. The upper leaves are 4-10 cm long, 2-7 mm wide, linear and often folded. The flower stalks have a whorl of 1 or 2 flowers (sometimes 4) at each node. The sepals are 3-5 mm long, glabrous and ovate or rounded to obtuse and are glabrous. The petals are 24-32 mm long and the flower tube is 6-10 mm long, deep blue in color with a whitish color at the opening and often with red- violet lines inside the throat and sparsely bearded to sometimes glabrous. -
Terr–3 Special-Status Plant Populations
TERR–3 SPECIAL-STATUS PLANT POPULATIONS 1.0 EXECUTIVE SUMMARY During 2001 and 2002, the review of existing information, agency consultation, vegetation community mapping, and focused special-status plant surveys were completed. Based on California Native Plant Society’s (CNPS) Electronic Inventory of Rare and Endangered Vascular Plants of California (CNPS 2001a), CDFG’s Natural Diversity Database (CNDDB; CDFG 2003), USDA-FS Regional Forester’s List of Sensitive Plant and Animal Species for Region 5 (USDA-FS 1998), U.S. Fish and Wildlife Service Species List (USFWS 2003), and Sierra National Forest (SNF) Sensitive Plant List (Clines 2002), there were 100 special-status plant species initially identified as potentially occurring within the Study Area. Known occurrences of these species were mapped. Vegetation communities were evaluated to locate areas that could potentially support special-status plant species. Each community was determined to have the potential to support at least one special-status plant species. During the spring and summer of 2002, special-status plant surveys were conducted. For each special-status plant species or population identified, a CNDDB form was completed, and photographs were taken. The locations were mapped and incorporated into a confidential GIS database. Vascular plant species observed during surveys were recorded. No state or federally listed special-status plant species were identified during special- status plant surveys. Seven special-status plant species, totaling 60 populations, were identified during surveys. There were 22 populations of Mono Hot Springs evening-primrose (Camissonia sierrae ssp. alticola) identified. Two populations are located near Mammoth Pool, one at Bear Forebay, and the rest are in the Florence Lake area. -
Rare Plant Survey of San Juan Public Lands, Colorado
Rare Plant Survey of San Juan Public Lands, Colorado 2005 Prepared by Colorado Natural Heritage Program 254 General Services Building Colorado State University Fort Collins CO 80523 Rare Plant Survey of San Juan Public Lands, Colorado 2005 Prepared by Peggy Lyon and Julia Hanson Colorado Natural Heritage Program 254 General Services Building Colorado State University Fort Collins CO 80523 December 2005 Cover: Imperiled (G1 and G2) plants of the San Juan Public Lands, top left to bottom right: Lesquerella pruinosa, Draba graminea, Cryptantha gypsophila, Machaeranthera coloradoensis, Astragalus naturitensis, Physaria pulvinata, Ipomopsis polyantha, Townsendia glabella, Townsendia rothrockii. Executive Summary This survey was a continuation of several years of rare plant survey on San Juan Public Lands. Funding for the project was provided by San Juan National Forest and the San Juan Resource Area of the Bureau of Land Management. Previous rare plant surveys on San Juan Public Lands by CNHP were conducted in conjunction with county wide surveys of La Plata, Archuleta, San Juan and San Miguel counties, with partial funding from Great Outdoors Colorado (GOCO); and in 2004, public lands only in Dolores and Montezuma counties, funded entirely by the San Juan Public Lands. Funding for 2005 was again provided by San Juan Public Lands. The primary emphases for field work in 2005 were: 1. revisit and update information on rare plant occurrences of agency sensitive species in the Colorado Natural Heritage Program (CNHP) database that were last observed prior to 2000, in order to have the most current information available for informing the revision of the Resource Management Plan for the San Juan Public Lands (BLM and San Juan National Forest); 2. -
Draft Hanford Injury Assessment Plan Appendices
Public Review Draft Hanford Natural Resource Injury Assessment Plan APPENDIX A | THE FOUR HANFORD NPL SITES On November 3, 1989, Hanford was added to the NPL as four separate sites: the 100 Area, 200 Area, 300 Area, and 1100 Area (see Exhibits B-1 through B-4, below).78 In order to coordinate response actions, each of these sites was further subdivided into operable units (OUs), based on geographic area or common waste sources. A total of 1,200 waste management units have been identified throughout the Hanford Site and are grouped among the four NPL sites (DOE 2006a). Cleanup efforts for the remaining Hanford Site contamination are organized into three major components: the River Corridor (including the 100 and 300 Areas), the Central Plateau (primarily the 200 Area), and tank waste. Cleanup of the Site is a particularly large and complex effort, dependent on many dozens of individual decision steps, stakeholder coordination, sustained funding, and the ability to address complex technical challenges. Full remediation of the NPL sites is expected to extend over the next 40 to 50 years; however, timelines are difficult to determine, due to the factors discussed above (DOE 2012). Additional summary information describing the four Hanford NPL sites and the current status of remediation efforts is provided below. More detailed information can be found at http://www.hanford.gov/. AREA 100 AREA DESCRIPTIONS The 100 Area contains the remnants of Hanford’s nine nuclear reactors, spread over six reactor sites (B/C, K, N, D, H, and F). The footprint covers about 26 sq. mi.