COMPUTER NETWORKS INTRODUCTION a Computer Network Or Data Network Is a Telecommunications Network That Allows Computers to Exchange Data

Total Page:16

File Type:pdf, Size:1020Kb

COMPUTER NETWORKS INTRODUCTION a Computer Network Or Data Network Is a Telecommunications Network That Allows Computers to Exchange Data COMPUTER NETWORKS INTRODUCTION A computer network or data network is a telecommunications network that allows computers to exchange data. In computer networks, networked computing devices pass data to each other along data connections. The connections (network links) between nodes are established using either cable media or wireless media. The best-known computer network is the Internet. Network computer devices that originate, route and terminate the data are called network nodes. Nodes can include hosts such as personal computers, phones, servers as well as networking hardware. Two such devices are said to be networked together when one device is able to exchange information with the other device, whether or not they have a direct connection to each other. Computer networks support applications such as access to the World Wide Web, shared use of application and storage servers, printers, and fax machines, and use of email and instant messaging applications. Computer networks differ in the physical media used to transmit their signals, the communications protocols to organize network traffic, the network's size, topology and organizational intent. Properties Computer networking may be considered a branch of electrical engineering, telecommunications, computer science, information technology or computer engineering, since it relies upon the theoretical and practical application of the related disciplines. A computer network has the following properties: Facilitates interpersonal communications : People can communicate efficiently and easily via email, instant messaging, chat rooms, telephone, video telephone calls, and video conferencing. Allows sharing of files, data, and other types of information: Authorized users may access information stored on other computers on the network. Providing access to information on shared storage devices is an important feature of many networks. Allows sharing of network and computing resources: Users may access and use resources provided by devices on the network, such as printing a document on a shared network printer. Distributed computing uses computing resources across a network to accomplish tasks. May be insecure : A computer network may be used by computer Crackers to deploy computer viruses or computer worms on devices connected to the network, or to prevent these devices from accessing the network (denial of service). May interfere with other technologies : Power line communication strongly disturbs certain forms of radio communication, e.g., amateur radio. It may also interfere with last mile access technologies such as ADSL and VDSL. May be difficult to set up : A complex computer network may be difficult to set up. It may be costly to set up an effective computer network in a large organization. TYPES OF NETWORKS (ACCORDING TO AREA COVERED) Different types of (private) networks are distinguished based on their size (in terms of the number of machines), their data transfer speed, and their reach. Private networks are networks that belong to a single organization. There are usually said to be three categories of networks: LAN (local area network) MAN (metropolitan area network) WAN (wide area network) There are two other types of networks: TANs (Tiny Area Network), which are the same as LANs but smaller (2 to 3 machines), and CANs (Campus Area Networks), which are the same as MANs (with bandwidth limited between each of the network's LANs). LAN LAN stands for Local Area Network.: It's a group of computers which all belong to the same organization, and which are linked within a small geographic area using a network, and often the same technology (the most widespread being Ethernet). A local area network is a network in its simplest form. Data transfer speeds over a local area network can reach up to 10 Mbps (such as for an Ethernet network) and 1 Gbps (as with FDDI or Gigabit Ethernet). A local area network can reach as many as 100, or even 1000, users. By expanding the definition of a LAN to the services that it provides, two different operating modes can be defined: In a "peer-to-peer" network, in which communication is carried out from one computer to another, without a central computer, and where each computer has the same role. in a "client/server" environment, in which a central computer provides network services to users. MAN MANs (Metropolitan Area Networks) connect multiple geographically nearby LANs to one another (over an area of up to a few dozen kilometres) at high speeds. Thus, a MAN lets two remote nodes communicate as if they were part of the same local area network. A MAN is made from switches or routers connected to one another with high- speed links (usually fibre optic cables). WANs A WAN (Wide Area Network or extended network) connects multiple LANs to one another over great geographic distances. The speed available on a WAN varies depending on the cost of the connections (which increases with distance) and may be low. WANs operate using routers, which can "choose" the most appropriate path for data to take to reach a network node. The most well-known WAN is the Internet. ACCORDING TO NETWORK TOPOLOGY The physical topology of a network refers to the configuration of cables, computers, and other peripherals. Physical topology should not be confused with logical topology which is the method used to pass information between workstations. Logical topology was discussed in the Protocol chapter. Main Types of Network Topologies In networking, the term "topology" refers to the layout of connected devices on a network. This article introduces the standard topologies of computer networking. One can think of a topology as a network's virtual shape or structure. This shape does not necessarily correspond to the actual physical layout of the devices on the network. For example, the computers on a home LAN may be arranged in a circle in a family room, but it would be highly unlikely to find an actual ring topology there. Network topologies are categorized into the following basic types: STAR TOPOLOGY Star Topology Many home networks use the star topology. A star network features a central connection point called a "hub" that may be a hub, switch or router. Devices typically connect to the hub with Unshielded Twisted Pair (UTP) Ethernet. Compared to the bus topology, a star network generally requires more cable, but a failure in any star network cable will only take down one computer's network access and not the entire LAN. If the hub fails, however, the entire network also fails. Advantages of a Star Topology Easy to install and wire. No disruptions to the network then connecting or removing devices. Easy to detect faults and to remove parts. Disadvantages of a Star Topology Requires more cable length than a linear topology. If the hub or concentrator fails, nodes attached are disabled. More expensive than linear bus topologies because of the cost of the concentrators. The protocols used with star configurations are usually Ethernet or LocalTalk. Token Ring uses a similar topology, called the star-wired ring. RING TOPOLOGY Ring Topology In a ring network, every device has exactly two neighbors for communication purposes. All messages travel through a ring in the same direction (either "clockwise" or "counterclockwise"). A failure in any cable or device breaks the loop and can take down the entire network. To implement a ring network, one typically uses FDDI, SONET, or Token Ring technology. Ring topologies are found in some office buildings or school campuses. BUS TOPOLOGY Bus networks (not to be confused with the system bus of a computer) use a common backbone to connect all devices. A single cable, the backbone functions as a shared communication medium that devices attach or tap into with an interface connector. A device wanting to communicate with another device on the network sends a broadcast message onto the wire that all other devices see, but only the intended recipient actually accepts and processes the message. Ethernet bus topologies are relatively easy to install and don't require much cabling compared to the alternatives. 10Base-2 ("ThinNet") and 10Base-5 ("ThickNet") both were popular Ethernet cabling options many years ago for bus topologies. However, bus networks work best with a limited number of devices. If more than a few dozen computers are added to a network bus, performance problems will likely result. In addition, if the backbone cable fails, the entire network effectively becomes unusable. Advantages of a Linear Bus Topology Easy to connect a computer or peripheral to a linear bus. Requires less cable length than a star topology. Disadvantages of a Linear Bus Topology Entire network shuts down if there is a break in the main cable. Terminators are required at both ends of the backbone cable. Difficult to identify the problem if the entire network shuts down. Not meant to be used as a stand-alone solution in a large building. TREE TOPOLOGY Tree Topology Tree topologies integrate multiple star topologies together onto a bus. In its simplest form, only hub devices connect directly to the tree bus, and each hub functions as the "root" of a tree of devices. This bus/star hybrid approach supports future expandability of the network much better than a bus (limited in the number of devices due to the broadcast traffic it generates) or a star (limited by the number of hub connection points) alone. Advantages of a Tree Topology Point-to-point wiring for individual segments. upported by several hardware and software venders. Disadvantages of a Tree Topology Overall length of each segment is limited by the type of cabling used. If the backbone line breaks, the entire segment goes down. More difficult to configure and wire than other topologies. HYBRID TOPOLOGY A combination of any two or more network topologies. Note 1: Instances can occur where two basic network topologies, when connected together, can still retain the basic network character, and therefore not be a hybrid network.
Recommended publications
  • Design Guide: Digitalmedia NVX Series System
    DigitalMedia™ NVX Series System Design Guide Crestron Electronics, Inc. Crestron product development software is licensed to Crestron dealers and Crestron Service Providers (CSPs) under a limited non-exclusive, non-transferable Software Development Tools License Agreement. Crestron product operating system software is licensed to Crestron dealers, CSPs, and end-users under a separate End-User License Agreement. Both of these Agreements can be found on the Crestron website at www.crestron.com/legal/software_license_agreement. The product warranty can be found at www.crestron.com/warranty. The specific patents that cover Crestron products are listed at patents.crestron.com. Certain Crestron products contain open source software. For specific information, please visit www.crestron.com/opensource. Crestron, the Crestron logo, AirMedia, Cresnet, Crestron Toolbox, DigitalMedia, DM, and Saros are either trademarks or registered trademarks of Crestron Electronics, Inc. in the United States and/or other countries. HTBaseT is either a trademark or registered trademark of the HDBaseT Alliance in the United States and/or other countries. HDMI is either a trademark or registered trademark of HDMI Licensing LLC in the United States and/or other countries. Active Directory, Microsoft, and Windows are either a trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Other trademarks, registered trademarks, and trade names may be used in this document to refer to either the entities claiming the marks and names or their products. Crestron disclaims any proprietary interest in the marks and names of others. Crestron is not responsible for errors in typography or photography. This document was written by the Technical Publications department at Crestron.
    [Show full text]
  • Chapter-15 NETWORKING CONCEPTS  Introduction:  a Computer Network Is a Interconnection of Two Or More Computers That Are Able to Exchange Information’S
    Chapter 15- Networking Concepts II PUC, MDRPUC, Hassan Chapter-15 NETWORKING CONCEPTS Introduction: A computer network is a interconnection of two or more computers that are able to exchange information’s. Two computers are said to be inter connected if they are capable of exchanging information. Network Goals/Advantages of Networking: Resource Sharing: o The aim is to make all programs, data and peripherals available to anyone on the network irrespective of the physical location of the resources and the user. Reliability: o A file can have copies on two or three different machines, so if one of them is unavailable (hardware crash), the other copies could be used. o For military, banking, air reservation and many other applications it is of great importance. Cost Factor: o Personal computers have better price/performance ratio than micro computers. o So it is better to have PC's, one per user, with data stored on one shared file server machine. Communication Medium. o Using a network, it is possible for managers, working far apart, to prepare financial report of the company. o The changes at one end can be immediately noticed at another and hence it speeds up co- operation among them. Need of Networking: File sharing provides sharing and grouping of data files over the network. Printing sharing of computer resources such as hard disk and printers etc. E-mail tools for communication with the e-mail address. Remote access able to access data and information around the globe. Sharing the database to multiple users at the same time by ensuring the integrity.
    [Show full text]
  • COMPUTER-NETWORKS-BY-MR-OTTO-S.3.Pdf
    COMPUTER NETWORKS Computer network is a connection of two or more computers for data and resource sharing purpose. 13.1 Advantages of networking computers . Eases file sharing: it allows file sharing and remote file access. It allows Sharing of peripheral devices: all computers in the network can share devices such as printers, fax machines, modems, scanners etc. It facilitates software sharing: software can be installed in one server computer and used by different work stations. It allows Communication: people on the network can communicate easily with each other through electronic mail. It facilitates workgroup computing: workgroup software enables many users to contribute to a document concurrently. Disadvantages of using a network . The hardware, software, and expertise required to set up a network can be expensive. Networks are vulnerable to security problems. If the server fails to work, the complete network may also fail to work. Network can lead to rapid spread of computer viruses 13.2 Types of Networks Networks classified by spatial distance are of four types among which include the following: . Local Area Network (LAN), . Wide Area Network (WAN), . Metropolitan Area Network (MAN) and Virtual Private Network (VPN). Local Area Network A local area network (LAN) is a network that connects computers in a small geographic area such as a building like a computer laboratory, or an office. 13.2.1 Advantages of LAN Local Area Network (LAN), has many advantages, but the main ones include: . The resources can be shared among different users . LAN is not very expensive and the small businesses, firms and educational institutes can afford and easily design the LAN.
    [Show full text]
  • Comparison of Network Topology Types in Communication Systems and Computer Networks 1404703
    Alexandria University Institute of Graduate Studies and Research Department of Information Technology M.Sc. program in Information Technology 2020 Assignment (1) of Comparison of network topology types in Communication Systems and Computer Networks 1404703 Supervisor Prof. Shawkat K. Guirguis Name: Israa Faisal Jassam ID: 1404-3-160 1 1. Introduction 1.1 Network topologies: It is the schematic description of a network arrangement, connecting various nodes (sender and receiver) through lines of connection. There are two types of network topologies: physical and logical. Physical topology confirms the physical layout of the connected devices and nodes, while the logical topology focuses on the pattern of data transfer between network nodes. 1.1.1 Physical topology: refers to the interconnected structure of a local area network (LAN). The method employed to connect the physical devices on the network with the cables, and the type of cabling used, all constitute the physical topology. Physical topology is further divided into two sections, Point-to-point connections and Multipoint connections. point-to-point connection: a communication link is established between two devices with one wire. A simple example of point-to-point connection is talking over telephone between two persons where anyone else is not allowed to use the phone on either side (Fig.1). Fig.1: multipoint connection: is a connection established between more than two devices. In multipoint connection, a single link is shared by multiple devices. So, it can be said that the channel capacity is shared temporarily by every device connecting to the link. If devices are using the link turn by turn, then it is said to be time shared line configuration.
    [Show full text]
  • PLC & Fieldbus Control Systems Automation Guidebook – Part 4
    PDHonline Course E448 (9 PDH) ______________________________________________________________________________ PLC & Fieldbus Control Systems Automation Guidebook – Part 4 Instructor: Jurandir Primo, PE 2014 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDHonline Course E448 www.PDHonline.org PLC & FIELDBUS CONTROL SYSTEMS AUTOMATION GUIDEBOOK – PART 4 CONTENTS: 1. PLC HISTORY 2. INTRODUCTION 3. INPUT/OUTPUT (I/O) CAPABILITIES 4. LADDER LOGIC PROGRAMS 5. HUMAN-MACHINE INTERFACE (HMI) 6. HOW THE PLCs WORK 7. FIELDBUS CONTROL SYSTEMS 8. DCS AND FIELDBUS DEVELOPMENT 9. FIELDBUS MODELS AND NETWORK STRUCTURE 10. DIAGNOSTICS & COMMUNICATION INTERFACES 11. BASIC COMMUNICATION STANDARDS 12. REFERENCES & LINKS ©2014 Jurandir Primo Page 1 of 101 www.PDHcenter.com PDHonline Course E448 www.PDHonline.org 1. PLC HISTORY The early history of the PLC (Programmable Logic Controller) goes back to the 1960’s when control systems were still handled using relay control. During this time the control rooms consisted of sev- eral walls containing many relays, terminal blocks and mass of wires. In 1968 Bill Stone, who was part of a group of engineers at the Hydramatic Division of General Mo- tors Corporation, presented a paper at the Westinghouse Conference outlining their problems with reliability and documentation for the machines at this plant. He also presented a design criteria de- veloped by the GM engineers for a “standard machine controller”, to eliminate costly scrapping of assembly-line relays. These specifications along with a proposal request to build a prototype were given to four control builders: • Allen-Bradley, by way of Michigan-based Information Instruments, Inc.
    [Show full text]
  • Logical Network Topology Examples
    Logical Network Topology Examples Is Kermie unincited when Barbabas vanquishes unheededly? Vaticinal Aristotle explants crosswise while Cammy always underline his syndication supernaturalise eighthly, he wiredrawn so fraudulently. Is Jonas homeomorphic or lyrate after uncrystallisable Levon relies so fadedly? Also logical aspects of what is used. This ensures that alienate the gold is transmitted by the computers one after at other fraud if there then a pathway break silence the chant is transmitted in the world fashion ensuring that the signals are received at their desired destination. In this topology, the bus acts as the backbone is the questionnaire, which joins every computer and peripherals in sky network. If you call not comprehend it, watch on now. The logical network examples: this topology is perfect network, you can use them more communicating with all. For example for original twisted pair Ethernet using repeated hubs was a logical bus topology with a physical star topology layout Also are Ring knot a logical. While the logical and physical topologies of a particular person may. Physical network topology examples include star family tree ring. As a mobile development framework helps to maintain all of network. It water the topological structure of a proverb and moon be depicted physically or logically. Most client traffic travels via these VCCs. In logical bus combinations on. For equal if data exist a ring topology in each branch of ICICI bank and bus. To resemble your devices from participating in VTP, configure them as VTP transparent. Logical Topology an overview ScienceDirect Topics. Signals act as. Unlike each other examples of information is difficult to.
    [Show full text]
  • Communications and the Internet What Is Communications?
    Communications And The Internet What is Communications? Communication is the process of conveying information from a sender to a receiver with the use of a medium in which the communicated information is understood by both sender and receiver. It is a process that allows organisms to exchange information by several methods. Why do Organizations Communicate? Share information and Data Resources Monitor Activities Process Sales and Orders Share the use of Applications and Processes Communicate with its Staff and Partners Communicate with its Customers Perform Transactions with its Vendors Computers make it possible for organizations to Communicate from point A to B in-house as well as over a wide geography A Medium B This is made possible via a set of Hardware Devices and Communication Software Organizations Communicate using Computers to Various Departments Accounting Sales Production Computers that communicate within an organization form a NETWORK A computer network, also referred to as just a network, consists of two or more computers, and typically other devices as well (such as printers, external hard drives, modems and routers), that are linked together so that they can communicate with each other and thereby exchange commands and share data, hardware and other resources. The devices on a network are referred to as nodes. They are analogous to the knots in nets that have traditionally been used by fishermen and others. Nodes can be connected using any of various types of media, including twisted pair copper wire cable, optical fiber cable, coaxial cable and radio waves. What is a Network Topology? In communication networks, a topology is a usually schematic description of the arrangement of a network, including its nodes and connecting lines (media).
    [Show full text]
  • Download, and a List of Some of Them Can Be Found at the OSC Website [131]
    An Investigation of Protocol Command Translation as a means to enable Interoperability between Networked Audio Devices Submitted in fulfilment of the requirements of the degree DOCTOR OF PHILOSOPHY of Rhodes University OSEDUM P. IGUMBOR February 2013 Abstract Digital audio networks allow multiple channels of audio to be streamed between de- vices. This eliminates the need for many different cables to route audio between devices. An added advantage of digital audio networks is the ability to configure and control the networked devices from a common control point. Common control of networked devices enables a sound engineer to establish and destroy audio stream connections be- tween networked devices that are distances apart. On a digital audio network, an audio transport technology enables the exchange of data streams. Typically, an audio transport technology is capable of transporting both control messages and audio data streams. There exist a number of audio transport technologies. Some of these technologies implement data transport by exchanging OSI/ISO layer 2 data frames, while others transport data within OSI/ISO layer 3 packets. There are some approaches to achieving interoperability between devices that utilize different audio transport technologies. A digital audio device typically implements an audio control protocol, which enables it process configuration and control messages from a remote controller. An audio control protocol also defines the structure of the messages that are exchanged between compli- ant devices. There are currently a wide range of audio control protocols. Some audio control protocols utilize layer 3 audio transport technology, while others utilize layer 2 audio transport technology. An audio device can only communicate with other devices that implement the same control protocol, irrespective of a common transport technol- ogy that connects the devices.
    [Show full text]
  • Lib Sc Question 2013
    Frequently Used Abbreviations in Library and Information Science AACR: Anglo-American Cataloguing Rules. ANSI : American National Standards Institute API : Application Programming Interface. ARPANET: Advanced Research Projects Agency Network. ASIS: American Society for Information Science. ASLIB: Association for Information Management, previously, the Association of Special Libraries and Information Bureau. ARL : Association of Research Libraries. BLAISE : British Library’s Automated Information Service BIS : Bureau of Indian Standards CALIBER: Convention on Automation of LIBraries in Education and Research institutions. CAS: Current Awareness Service CCF: Common Communication Format CILIP: Chartered Institute of Library and Information Professionals. CMS: Content Management System. COPSAT : Current Online Patent in Science and Technology COUNTER : Counting Online Usage of Networked Electronic Resources CPM : Critical Path Method DCMI: Dublin Core Metadata Initiative. DDS: Document Delivery Service DELNET: Developing Library NETwork. DLF: Digital Library Federation. DNS: Domain Naming System. DRTC: Documentation Research and Training Centre. FRAD: Functional Requirements for Authority Data. FRBR: Functional Requirements for Bibliographic Records. FSF: Free Software Foundation. FTE : Full-Time equivalent FTP: File Transfer Protocol. GPRS: General Packet Radio Service. GSDL: Green Stone Digital Library software. GUI : Graphic User Interface HTML: Hyper Text Mark Up Language. HTTP: Hyper Text Transfer Protocol. IASLIC: Indian Association
    [Show full text]
  • Real Time Instrument Communication and Networking Design to Support the Replacement of Legacy Sensor with Smart Sensor
    IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 4 Ver. IV (Jul. – Aug. 2017), PP 44-48 www.iosrjournals.org Real Time Instrument communication and networking Design to support the replacement of legacy sensor with smart sensor. *Nwiwure, Don Basil Emmanuel, Agbeb, Nornu Stephen, Komi, Innocent Saturday 1,2,3: Department of Electrical/Electronic Engineering, Ken saro-Wiwa polytechnic PMB 20 Bori, Rivers State, Nigeria. Corresponding Author: Nwiwure, Don Basil Emmanuel Abstract: The need to acquire data real time is a priority in information technology system and process control industry. The acquisition of data via computer network, facilitate industrial process and enable easy measurement of industrial plant. However, it's important to have a data acquisition system that provides the flexibility to expand and change with the applications. The national instrument (NI) data acquisition systems are completely configured, so that we can choose the software, data acquisition (DAQ) devices, and signal conditioning that best fit the application needs. The priority of this paper is to replace the existing legacy sensors with a smart sensor and the integration of the smart sensor into industrial network architecture and implement a digital solution using any field bus standard protocol. The smart sensor is developed to address the problem of interfacing and communication protocol in our industries, such as; hardware interfacing wire and cable, Encoding and decoding of signal. But the foundation field bus is chosen as the industrial network solution that can provide transmission of additional device data alongside the measured value, such as status of the system and service information.
    [Show full text]
  • NETWORK TOPOLOGIES Topology Is Basically the Orientation of the Nodes
    S. S Jain Subodh P.G. (Autonomous) College SUBJECT -DATA COMMUNICATION & NETWORKING TITLE –TOPOLOGIES BY-VANDANA NIGAM NETWORK TOPOLOGIES Topology is basically the orientation of the nodes. It describes how nodes are connected with each other. There are six basic configurations used to connect computers they are the .Bus .Ring .Star .Tree .Mesh (completely Connected) .Hybrid Bus topology • This type of network was widely used in the 1980’s • In this configuration every computer (node) shares the networks total bus capacities. • In this configuration adding more computers will reduce the access speed on the network. • Each computer communicates to other computers on the network independently this is referred to as PEER-TO-PEER networking Working of Bus Topology • All computers on a network have a distinct address • A message would be send from one computer with the address of another computer attached to the message • The message is broadcasted to all the computers on the network until the addressed PC accepts the message • At a time only one communication is possible between two nodes Working of Bus Topology • The type of wires used for Bus Networks in the 80’s were called Thicknet and Thinnet • A Thicknet cable (very large about 1 inch in diameter usually yellow was hung around a room) • Thinnet cables were connected to the PC’s NIC and a Transceiver. The Transceiver was tapped into the Thicknet cable • To stop the message from bouncing back and forward down the wire (known as signal bounce) both ends of the network are terminated with
    [Show full text]
  • Network Topology
    University of Anbar computer network College of Engineering adnan salih Dept. of Electrical Engineering Network topology There are seven basic topologies in the study of network topology: 1. Point-to-point topology, 2. Bus (point-to-multipoint) topology, 3. Ring topology, 4. Star topology, 5. Hybrid topology, 6. Mesh topology and 7. Tree topology. The interconnections between computers whether logical or physical are the foundation of this classification. Logical topology is the way a computer in a given network transmits information, not the way it looks or connected, along with the varying speeds of cables used from one network to another. On the other hand the physical topology is affected by a number of factors: Troubleshooting technique, Installation cost, Office layout and Cables‘ types. The physical topology is figured out on the basis of a network‘s capability to access media and devices, the fault tolerance desired and the cost of telecommunications circuits. The classification of networks by the virtue of their physical span is as follows: Local Area Networks (LAN), Wide Area Internetworks (WAN) and Metropolitan Area Networks or campus or building internetworks. 11.6.3 How Is the Physical Topology Classified? Point-to-Point Network Topology It is the basic model of typical telephony. The simplest topology is a permanent connection between two points. The value 127 of a demanding point-to-point network is proportionate to the number of subscribers‘ potential pairs. It is possible to establish a permanent circuit within many switched telecommunication systems: the telephone present in a lobby would always connect to the same port, no matter what number is being dialed.
    [Show full text]