View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kosmopolis University of Pennsylvania ScholarlyCommons Departmental Papers (Biology) Department of Biology 1-2016 Cytoplasmic Poly(A) Binding Protein-1 Binds to Genomically Encoded Sequences Within Mammalian mRNAs Hemant K. Kini University of Pennsylvania Ian M. Silverman University of Pennsylvania Xinjun Ji University of Pennsylvania,
[email protected] Brian D. Gregory University of Pennsylvania,
[email protected] Stephen A. Liebhaber University of Pennsylvania,
[email protected] Follow this and additional works at: http://repository.upenn.edu/biology_papers Part of the Biology Commons Recommended Citation Kini, H. K., Silverman, I. M., Ji, X., Gregory, B. D., & Liebhaber, S. A. (2016). Cytoplasmic Poly(A) Binding Protein-1 Binds to Genomically Encoded Sequences Within Mammalian mRNAs. RNA, 22 (1), 61-74. http://dx.doi.org/10.1261/rna.053447.115 This paper is posted at ScholarlyCommons. http://repository.upenn.edu/biology_papers/44 For more information, please contact
[email protected]. Cytoplasmic Poly(A) Binding Protein-1 Binds to Genomically Encoded Sequences Within Mammalian mRNAs Abstract The functions of the major mammalian cytoplasmic poly(A) binding protein, PABPC1, have been characterized predominantly in the context of its binding to the 3′ poly(A) tails of mRNAs. These interactions play important roles in post-transcriptional gene regulation by enhancing translation and mRNA stability. Here, we performed transcriptome-wide CLIP-seq analysis to identify additional PABPC1 binding sites within genomically encoded mRNA sequences that may impact on gene regulation. From this analysis, we found that PABPC1 binds directly to the canonical polyadenylation signal in thousands of mRNAs in the mouse transcriptome.