Do SNARE Protein Isoforms Determine Fusion Pore Characteristics?

Total Page:16

File Type:pdf, Size:1020Kb

Do SNARE Protein Isoforms Determine Fusion Pore Characteristics? The Journal of Neuroscience, August 19, 2015 • 35(33):11459–11461 • 11459 Journal Club Editor’s Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more information on the format and purpose of the Journal Club, please see http://www.jneurosci.org/misc/ifa_features.shtml. Do SNARE Protein Isoforms Determine Fusion Pore Characteristics? X Linda van Keimpema1,2 and XTim Kroon3 1Sylics (Synaptologics B.V.), 1008 BA, Amsterdam, The Netherlands, and Departments of 2Functional Genomics and 3Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands Review of Chang et al. Membrane fusion is a crucial element of and Fasshauer, 2012; Rizo and Su¨dhof, colleagues (2015) investigates the involve- many cellular processes, including the 2012). ment of the synaptobrevin 2 transmem- release of neurotransmitters from syn- One essential component of mem- brane domain in the fusion pore. In this aptic vesicles in neurons and the release brane fusion is the formation of the fusion study, the authors used amperometry to of neuropeptides, neurotrophic factors, pore, an intermediate, temporary struc- measure the release of catecholamines and hormones from dense core vesicles ture that bridges the vesicular and plasma from DCVs. Secretion of a single DCV re- (DCVs) in brain and neuroendocrine membranes. The composition of this pore sults in a spike of current upon membrane cells. Vesicle secretion is mediated by the is currently under debate. One hypothesis fusion. However, just before this spike, formation of the soluble N-ethylmalei- is that the fusion pore is composed purely small amounts of cargo are secreted mide-sensitive factor (NSF) attachment of lipids of both membranes. According through the fusion pore. This shows up in protein receptor (SNARE) complex. to this hypothesis, the SNARE complex amperometric measurements as a pre- This SNARE complex comprises vesicle- accelerates pore formation by bringing spike foot (PSF) (Jackson and Chapman, associated membrane protein (VAMP), the membranes in close proximity. An- 2006). For their experiments, Chang et al. syntaxin, and synaptosomal-associated pro- other model proposes a proteinaceous fu- (2015) used chromaffin cells from synap- tein (SNAP). Different isoforms of these sion pore, in which the transmembrane tobrevin 2 and cellubrevin (VAMP2 and proteins are involved in membrane fusion domains of the SNARE proteins are incor- VAMP3, respectively) double knock-out at different sites, with the canonical porated into the pore (Jackson and Chap- (DKO) mice, in which DCV fusion is al- SNARE complex of synaptic vesicles con- man, 2008; Fang and Lindau, 2014). The most completely abolished. Similar to the sisting of synaptobrevin 2, syntaxin 1, and latter hypothesis is supported by previous study by Han et al. (2004), 21 mutants of SNAP25 (Kasai et al., 2012). Both synap- work by Han et al. (2004), who showed synaptobrevin 2—each with a single tobrevin 2 and syntaxin 1 contain a that replacing any of three specific amino amino acid replaced with tryptophan in ␣ membrane-spanning -helix—the trans- acids of the syntaxin 1 transmembrane the transmembrane domain (positions membrane domain—that spans the vesi- domain with the large amino acid trypto- 96–116)—were individually expressed in cle membrane and the plasma membrane, phan altered flux through the fusion pore. the DKO cells. Expression of any of these respectively. In addition, these proteins These amino acids are located at the same constructs rescued DCV release frequency ␣ contain an -helical SNARE motif, while face of the ␣-helix, suggesting that this to wild-type levels (eight times higher ␣ SNAP25 contains two. These -helices ␣-helical face lines the fusion pore. These than DKO). In addition, four of these can form a tight bundle, which brings the data led the authors to propose a model in mutants (L99W, V101W, C103W, and vesicular and plasma membranes into which the fusion pore consists of a circu- I105W) showed reduced PSF amplitude. close contact. Subsequently, the mem- lar arrangement of five to eight syntaxin 1 Replacement of these amino acids with branes fuse and cargo is released (Jahn transmembrane domains (Han et al., the small amino acid glycine resulted in an 2004). This raises the question of whether increased PSF. Therefore, the authors Received May 31, 2015; revised July 16, 2015; accepted July 18, 2015. the transmembrane domain of synapto- concluded that the residues of these four Correspondence should be addressed to Linda van Keimpema, VU Uni- brevin 2 might also be involved in fusion amino acids influence flux through the fu- versity, De Boelelaan 1085, Room B-444, 1081 HV, Amsterdam, The Neth- erlands. E-mail: [email protected]. pore formation. sion pore in a size-dependent manner, DOI:10.1523/JNEUROSCI.2087-15.2015 A study recently published in The with larger residues obstructing the fusion Copyright © 2015 the authors 0270-6474/15/3511459-03$15.00/0 Journal of Neuroscience by Chang and pore. 11460 • J. Neurosci., August 19, 2015 • 35(33):11459–11461 van Keimpema and Kroon • Journal Club To verify these findings, Chang et al. aptobrevin 2, but it can partially take over 2013), cellubrevin regulates vesicle exocy- (2015) measured membrane capacitance its function when synaptobrevin 2 is ab- tosis in astrocytes (Li et al., 2015), and and pore conductance. Membrane capac- sent. Interestingly, while the SNARE do- synaptobrevin 1 mediates synaptic vesicle itance is a measure of the surface area of mains of synaptobrevin 2 and cellubrevin release in a subpopulation of hippocam- the plasma membrane. When a vesicle differ by only a single amino acid, the pal neurons (Zimmermann et al., 2014). fuses, its membrane is incorporated into transmembrane domain of cellubrevin is The isoform composition of the SNARE the plasma membrane, which increases only 44% homologous to the transmem- complex as a whole may thus determine the cell’s membrane capacitance. The brane domain of synaptobrevin 2. Of the the characteristics of fusion pores formed tryptophan substitutions that decreased four amino acids that Chang et al. (2015) by these proteins and therefore partly reg- PSF amplitude did not influence the found to influence fusion pore flux, three ulate temporal dynamics of release events changes in capacitance resulting from ves- differ between synaptobrevin 2 and cel- and the amount of cargo that is secreted icle fusion, which means that vesicle size lubrevin. At positions 101 and 103, cel- from a vesicle. At synapses, characteristics was not affected. However, the substitu- lubrevin expresses a serine and leucine, of the fusion pore could therefore influ- tions did decrease conductance of the respectively. Compared to the residues ence kinetics of synaptic events, which can fusion pore, which indicates that the present in synaptobrevin 2 (valine at 101 in turn influence synaptic integration physical properties of the pore were al- and cysteine at 103), the polarity of these (Magee, 2000). Also, low levels of release tered. This further supports the idea that residues is altered (from nonpolar to polar through a fusion pore have been hypoth- these amino acids line the fusion pore and at residue 101 and from polar to nonpolar esized to act as an inhibitory signal, desen- influence its characteristics. The authors at residue 103). Residue polarity has been sitizing postsynaptic receptors (Jackson also asked whether the charge of residues linked to ion permeation through the and Chapman, 2008). One type of fusion lining the fusion pore affect the flux through pore of an ion channel (Juntadech et al., in which the fusion pore plays a funda- the pore. Indeed, they show that incorpora- 2014). Therefore, the altered residue po- mental role is kiss-and-run. Here, the fu- tion of negatively charged amino acid resi- larity might also directly influence the flux sion pore closes after release of cargo and dues increased the PSF amplitude, whereas of charged cargo through a fusion pore the vesicle retracts from the membrane, incorporation of positively charged amino formed by cellubrevin. In addition, cel- unlike full-collapse fusion, where the fu- acid residues decreased PSF amplitude and lubrevin contains a glycine at position 99. sion pore dilates and the vesicle mem- therefore the outflow of positively charged The authors report that making this spe- brane is incorporated into the plasma cathecholamines. cific substitution in synaptobrevin 2 membrane. Whether synaptic vesicles en- The data presented by Chang and col- (L99G) appeared to increase PSF ampli- gage in kiss-and-run release is still under leagues (2015) indicate that besides the tude, although the difference did not debate, but it has been well established for transmembrane domain of syntaxin 1, the reach statistical significance (Chang et al., DCV secretion (Alabi and Tsien, 2013), transmembrane domain of synaptobrevin 2015). Given these differences in amino for which kiss-and-run is used almost 2 also lines the fusion pore. Interestingly, acid residues at pore-lining sites between exclusively (Chiang et al., 2014). The the four residues in the synaptobrevin 2 synaptobrevin 2 and cellubrevin, we sug- composition of the SNARE complexes in- transmembrane domain that alter the PSF gest that fusion pores formed by these volved in different types of fusion may are located two-by-two on opposite faces proteins will have different characteris- therefore be important in determining of the ␣-helix, and therefore cannot line tics, and that pores formed by cellubrevin the release of cargo through the fusion the fusion pore simultaneously. This is will have a higher PSF amplitude than pore from both dense core and synaptic unlike the findings for syntaxin 1, where pores formed by synaptobrevin 2. Consis- vesicles. the residues that alter fusion pore flux are tent with this, Borisovska et al.
Recommended publications
  • SNARE Proteins and the Timing of Neurotransmitter Release
    Molecular Psychiatry (1998) 3, 293–297 1998 Stockton Press All rights reserved 1359–4184/98 $12.00 NEWS & VIEWS SNARE proteins and the timing of neurotransmitter release The SNARE complex proteins have been implicated in exocytotic neurotransmitter release and other forms of membrane fusion. Recent work shows that NSF, the ATPase of the SNARE complex, regulates the kinetics of neurotransmitter release and can thereby control the inte- grative properties of synapses. Time is one of the most critical parameters in the func- hydrolyzes ATP. Because SNAREs are found on both tioning of the brain. Information transfer on the time- the synaptic vesicle membrane and the plasma mem- scale of milliseconds (10−3 seconds) is typical through- brane, it has been postulated that the various SNARE out the brain and in certain brain regions, such as the complexes mediate the interaction between the two auditory brainstem, time differences on the order of membranes before fusion and thus may be necessary microseconds (10−6 seconds) are used to define the fre- for neurotransmitter release.2 quency and location of perceived sounds. Thus infor- Evidence for a role for SNARE proteins in neuro- mation processing not only depends on a fast underly- transmitter release has come from a variety of sources. ing process but also on the precise timing of synaptic The most compelling indication of the central impor- activity. Such high temporal fidelity must rely upon tance of the three membrane SNARE proteins is that very finely-regulated molecular mechanisms. However, these proteins are remarkably specific targets of tetanus until recently the identity of these mechanisms has and botulinum toxins, a group of potent neurotoxins been remarkably elusive.
    [Show full text]
  • Structural Insights Into Membrane Fusion Mediated by Convergent Small Fusogens
    cells Review Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens Yiming Yang * and Nandini Nagarajan Margam Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] * Correspondence: [email protected] Abstract: From lifeless viral particles to complex multicellular organisms, membrane fusion is inarguably the important fundamental biological phenomena. Sitting at the heart of membrane fusion are protein mediators known as fusogens. Despite the extensive functional and structural characterization of these proteins in recent years, scientists are still grappling with the fundamental mechanisms underlying membrane fusion. From an evolutionary perspective, fusogens follow divergent evolutionary principles in that they are functionally independent and do not share any sequence identity; however, they possess structural similarity, raising the possibility that membrane fusion is mediated by essential motifs ubiquitous to all. In this review, we particularly emphasize structural characteristics of small-molecular-weight fusogens in the hope of uncovering the most fundamental aspects mediating membrane–membrane interactions. By identifying and elucidating fusion-dependent functional domains, this review paves the way for future research exploring novel fusogens in health and disease. Keywords: fusogen; SNARE; FAST; atlastin; spanin; myomaker; myomerger; membrane fusion 1. Introduction Citation: Yang, Y.; Margam, N.N. Structural Insights into Membrane Membrane fusion
    [Show full text]
  • SNAP-24, a Novel Drosophila SNARE Protein 4057 Proteins Were Purified on Glutathione Beads and Cleaved from the GST Fig
    Journal of Cell Science 113, 4055-4064 (2000) 4055 Printed in Great Britain © The Company of Biologists Limited 2000 JCS1894 SNAP-24, a Drosophila SNAP-25 homologue on granule membranes, is a putative mediator of secretion and granule-granule fusion in salivary glands Barbara A. Niemeyer*,‡ and Thomas L. Schwarz§ Department of Molecular and Cellular Physiology, Stanford Medical School, Stanford, CA 94305, USA *Present address: Department of Pharmacology and Toxicology, School of Medicine, University of Saarland, D-66421 Homburg, Germany ‡Author for correspondence (e-mail: [email protected]) §Present address: Harvard Medical School, Division of Neuroscience, The Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA Accepted 16 September; published on WWW 31 October 2000 SUMMARY Fusion of vesicles with target membranes is dependent is not concentrated in synaptic regions. In vitro studies, on the interaction of target (t) and vesicle (v) SNARE however, show that SNAP-24 can form core complexes with (soluble NSF (N-ethylmaleimide-sensitive fusion protein) syntaxin and both synaptic and non-synaptic v-SNAREs. attachment protein receptor) proteins located on opposing High levels of SNAP-24 are found in larval salivary glands, membranes. For fusion at the plasma membrane, the t- where SNAP-24 localizes mainly to granule membranes SNARE SNAP-25 is essential. In Drosophila, the only rather than the plasma membrane. During glue secretion, known SNAP-25 isoform is specific to neuronal axons and the massive exocytotic event of these glands, SNAP-24 synapses and additional t-SNAREs must exist that mediate containing granules fuse with one another and the apical both non-synaptic fusion in neurons and constitutive and membrane, suggesting that glue secretion utilizes regulated fusion in other cells.
    [Show full text]
  • Is Synaptotagmin the Calcium Sensor? Motojiro Yoshihara, Bill Adolfsen and J Troy Littleton
    315 Is synaptotagmin the calcium sensor? Motojiro Yoshihara, Bill Adolfsen and J Troy Littletonà After much debate, recent progress indicates that the synaptic synaptotagmins, which are transmembrane proteins con- vesicle protein synaptotagmin I probably functions as the taining tandem calcium-binding C2 domains (C2A and calcium sensor for synchronous neurotransmitter release. C2B) (Figure 1a). Synaptotagmin I is an abundant cal- Following calcium influx into presynaptic terminals, cium-binding synaptic vesicle protein [8,9] that has been synaptotagmin I rapidly triggers the fusion of synaptic vesicles demonstrated via genetic studies to be important for with the plasma membrane and underlies the fourth-order efficient synaptic transmission in vivo [10–13]. The C2 calcium cooperativity of release. Biochemical and genetic domains of synaptotagmin I bind negatively-charged studies suggest that lipid and SNARE interactions underlie phospholipids in a calcium-dependent manner [9,14,15, synaptotagmin’s ability to mediate the incredible speed of 16–18]. There is compelling evidence that phospholipid vesicle fusion that is the hallmark of fast synaptic transmission. binding is an effector interaction in vesicle fusion, as the calcium dependence of this process ( 74 mM) and its Addresses rapid kinetics (on a millisecond scale) (Figure 1b) fit Picower Center for Learning and Memory, Department of Biology and reasonably well with the predicted requirements of Department of Brain and Cognitive Sciences, Massachusetts synaptic transmission [15]. In addition to phospholipid Institute of Technology, Cambridge, MA 02139, USA Ãe-mail: [email protected] binding, the calcium-stimulated interaction between synaptotagmin and the t-SNAREs syntaxin and SNAP- 25 [15,19–23] provides a direct link between calcium and Current Opinion in Neurobiology 2003, 13:315–323 the fusion complex.
    [Show full text]
  • Regulation of Neuronal Communication by G Protein-Coupled Receptors ⇑ Yunhong Huang, Amantha Thathiah
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 589 (2015) 1607–1619 journal homepage: www.FEBSLetters.org Review Regulation of neuronal communication by G protein-coupled receptors ⇑ Yunhong Huang, Amantha Thathiah VIB Center for the Biology of Disease, Leuven, Belgium Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium article info abstract Article history: Neuronal communication plays an essential role in the propagation of information in the brain and Received 31 March 2015 requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mech- Revised 5 May 2015 anism through which neurons communicate with each other. It is a strictly regulated process which Accepted 5 May 2015 involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release Available online 14 May 2015 from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G Edited by Wilhelm Just protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the func- tion of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in reg- Keywords: G protein-coupled receptors ulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of G-proteins astrocytic GPCRs in the regulation of neuronal communication. Neuronal communication Ó 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Synaptic transmission Signaling Astrocytes Neurons Autoreceptors Neurotransmitters 1.
    [Show full text]
  • Molecular Mechanism of Fusion Pore Formation Driven by the Neuronal SNARE Complex
    Molecular mechanism of fusion pore formation driven by the neuronal SNARE complex Satyan Sharmaa,1 and Manfred Lindaua,b aLaboratory for Nanoscale Cell Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany and bSchool of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850 Edited by Axel T. Brunger, Stanford University, Stanford, CA, and approved November 1, 2018 (received for review October 2, 2018) Release of neurotransmitters from synaptic vesicles begins with a systems in which various copy numbers of syb2 were incorporated narrow fusion pore, the structure of which remains unresolved. To in an ND while the t-SNAREs were present on a liposome have obtain a structural model of the fusion pore, we performed coarse- been used experimentally to study SNARE-mediated mem- grained molecular dynamics simulations of fusion between a brane fusion (13, 17). The small dimensions of the ND compared nanodisc and a planar bilayer bridged by four partially unzipped with a spherical vesicle makes such systems ideally suited for MD SNARE complexes. The simulations revealed that zipping of SNARE simulations without introducing extreme curvature, which is well complexes pulls the polar C-terminal residues of the synaptobrevin known to strongly influence the propensity of fusion (18–20). 2 and syntaxin 1A transmembrane domains to form a hydrophilic MARTINI-based CGMD simulations have been used in several – core between the two distal leaflets, inducing fusion pore forma- studies of membrane fusion (16, 21 23). To elucidate the fusion tion. The estimated conductances of these fusion pores are in good pore structure and the mechanism of its formation, we performed agreement with experimental values.
    [Show full text]
  • New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System
    G C A T T A C G G C A T genes Review New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System James H. Grissom 1, Verónica A. Segarra 2 and Richard J. Chi 1,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] 2 Department of Biology, High Point University, High Point, NC 27268, USA; [email protected] * Correspondence: [email protected] Received: 30 June 2020; Accepted: 2 August 2020; Published: 6 August 2020 Abstract: Saccharomyces cerevisiae is one of the best model organisms for the study of endocytic membrane trafficking. While studies in mammalian cells have characterized the temporal and morphological features of the endocytic pathway, studies in budding yeast have led the way in the analysis of the endosomal trafficking machinery components and their functions. Eukaryotic endomembrane systems were thought to be highly conserved from yeast to mammals, with the fusion of plasma membrane-derived vesicles to the early or recycling endosome being a common feature. Upon endosome maturation, cargos are then sorted for reuse or degraded via the endo-lysosomal (endo-vacuolar in yeast) pathway. However, recent studies have shown that budding yeast has a minimal endomembrane system that is fundamentally different from that of mammalian cells, with plasma membrane-derived vesicles fusing directly to a trans-Golgi compartment which acts as an early endosome. Thus, the Golgi, rather than the endosome, acts as the primary acceptor of endocytic vesicles, sorting cargo to pre-vacuolar endosomes for degradation. The field must now integrate these new findings into a broader understanding of the endomembrane system across eukaryotes.
    [Show full text]
  • SNAP-25 Gene Family Members Differentially Support Secretory
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1877-1889 doi:10.1242/jcs.201889 RESEARCH ARTICLE SNAP-25 gene family members differentially support secretory vesicle fusion Swati Arora, Ingrid Saarloos, Robbelien Kooistra, Rhea van de Bospoort, Matthijs Verhage* and Ruud F. Toonen* ABSTRACT 1994). In neurons, the vesicular SNARE synaptobrevin-2 (also Neuronal dense-core vesicles (DCVs) transport and secrete known as VAMP2) and membrane SNAREs syntaxin-1 and SNAP- neuropeptides necessary for development, plasticity and survival, 25 drive fusion of SVs for fast neurotransmission (Jahn and but little is known about their fusion mechanism. We show that Fasshauer, 2012; Südhof, 2013; Südhof and Rothman, 2009). Like 2+ Snap-25-null mutant (SNAP-25 KO) neurons, previously shown to SV fusion, DCV fusion is triggered by Ca influx (Balkowiec and degenerate after 4 days in vitro (DIV), contain fewer DCVs and have Katz, 2002; de Wit et al., 2009; Farina et al., 2015; Shimojo et al., reduced DCV fusion probability in surviving neurons at DIV14. At 2015; van de Bospoort et al., 2012), although efficient DCV fusion DIV3, before degeneration, SNAP-25 KO neurons show normal DCV typically requires more prolonged stimulation (Balkowiec and Katz, fusion, but one day later fusion is significantly reduced. To test if other 2002; Bartfai et al., 1988; Hartmann et al., 2001; van de Bospoort SNAP homologs support DCV fusion, we expressed SNAP-23, et al., 2012). Neuronal DCVs are often highly mobile (de Wit et al., SNAP-29 or SNAP-47 in SNAP-25 KO neurons. SNAP-23 and 2006; Wong et al., 2012), not pre-docked at their release sites SNAP-29 rescued viability and supported DCV fusion in SNAP-25 KO (Hammarlund et al., 2008; van de Bospoort et al., 2012) and fuse at neurons, but SNAP-23 did so more efficiently.
    [Show full text]
  • ADP Ribosylation Factor 6 Is Activated and Controls Membrane Delivery
    JCBArticle ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages Florence Niedergang,1 Emma Colucci-Guyon,1 Thierry Dubois,1 Graça Raposo,2 and Philippe Chavrier1 1Membrane and Cytoskeleton Dynamics Group and 2Electron Microscopy Group, UMR 144 Centre National de la Recherche Scientifique, Institut Curie, F-75248 Paris Cedex 05, France ngulfment of particles by phagocytes is induced by immunoglobulins (FcRs). A dominant-negative mutant of their interaction with specific receptors on the cell ARF6 (T27N mutation) dramatically affected FcR-mediated Esurface, which leads to actin polymerization and the phagocytosis. Expression of ARF6-T27N lead to a reduction extension of membrane protrusions to form a closed phago- in the focal delivery of vesicle-associated membrane protein some. Membrane delivery from internal pools is considered 3ϩ endosomal recycling membranes at phagocytosis sites, to play an important role in pseudopod extension during whereas actin polymerization was unimpaired. This resulted phagocytosis. Here, we report that endogenous ADP ribosyla- in an early blockade in pseudopod extension and accumu- tion factor 6 (ARF6), a small GTP-binding protein, undergoes lation of intracellular vesicles, as observed by electron a sharp and transient activation in macrophages when phago- microscopy. We conclude that ARF6 is a major regulator of cytosis was initiated via receptors for the Fc portion of membrane recycling during phagocytosis. Introduction Phagocytosis is the mechanism of internalization used by cells the plasma membrane to be locally elongated to form the to take up relatively large particles (Ͼ0.5 ␮m) into an intra- engulfing pseudopods (Castellano et al., 2001; May and cellular compartment or phagosome.
    [Show full text]
  • The Molecular Machinery of Neurotransmitter Release Nobel Lecture, 7 December 2013
    The Molecular Machinery of Neurotransmitter Release Nobel Lecture, 7 December 2013 by Thomas C. Südhof Dept. of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, USA. 1. THE NEUROTRANSMITTER RELEASE ENIGMA Synapses have a long history in science. Synapses were frst functionally demon- strated by Emil duBois-Reymond (1818–1896), were morphologically identifed by classical neuroanatomists such as Rudolf von Kölliker (1817–1905) and San- tiago Ramon y Cajal (1852–1934), and named in 1897 by Michael Foster (1836– 1907). Although the chemical nature of synaptic transmission was already sug- gested by duBois-Reymond, it was long disputed because of its incredible speed. Over time, however, overwhelming evidence established that most synapses use chemical messengers called neurotransmitters, most notably with the pioneer- ing contributions by Otto Loewi (1873–1961), Henry Dale (1875–1968), Ulf von Euler (1905–1983), and Julius Axelrod (1912–2004). In parallel, arguably the most important advance to understanding how synapses work was provided by Bernard Katz (1911–2003), who elucidated the principal mechanism of syn- aptic transmission (Katz, 1969). Most initial studies on synapses were carried out on the neuromuscular junction, and central synapses have only come to the fore in recent decades. Here, major contributions by many scientists, including George Palade, Rodolfo Llinas, Chuck Stevens, Bert Sakmann, Eric Kandel, and Victor Whittaker, to name just a few, not only confrmed the principal results obtained in the neuromuscular junction by Katz, but also revealed that synapses 259 6490_Book.indb 259 11/4/14 2:29 PM 260 The Nobel Prizes exhibit an enormous diversity of properties as well as an unexpected capacity for plasticity.
    [Show full text]
  • Vesicle Fusion
    GIANT VESICLE FORMATION THROUGH THE ASSEMBLY OF 2D SUPPORTED LIPID BILAYERS Nobuo Misawa1, Hiroki Oyama2, Ryugo Tero1, Kazuaki Sawada2, 3 1Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Japan 2Electrical and Electronic Information Engineering, Toyohashi University of Technology, Japan 3JST-CREST, Japan ABSTRACT We report vesicle formation through the assembly of patterned supported lipid bilayers (SLBs) aiming at easy production of giant vesicles with the properties of (i) unilamellar, (ii) organic solvent free, and (iii) fine size control. We prepared SLBs which were formed by a conventional vesicle fusion method using small vesicles of ~ 100 nm in diameter on patterned SiO2 surface and attempted to produce giant unilamellar vesicles from the SLBs by electroformation. The SLBs containing fluorescently-labeled lipid were investigated with fluorescence recovery after photobleaching (FRAP) and atomic force microscopy (AFM). Results of the FRAP and the AFM observations showed that the lipid membranes were single-layered patterned homogeneous SLBs. After the electroformation, we obtained images of vesicles which implied that they were derived from the patterned planar SLBs. Furthermore, the result of vesicle size distributions seemed to indicate that the formed vesicle size depended on the pattern of 2-dimensional SLBs. KEYWORDS Liposome, Vesicle fusion, Supported lipid bilayer, Fluorescence recovery after photobleaching, Electroformation. INTRODUCTION Lipid membranes are used for a model system of plasma membranes. Many researchers have been focused on producing of cell-sized and monodisperse liposomes or vesicles from lipid membranes [1, 2] and using them as mimic cells or applying them to carriers for drug delivery systems (DDS). In these days, it is reported that vesicles are actually utilized for compartments of self-reproducible cell-like artifacts [3, 4].
    [Show full text]
  • Structure and Function of SNARE and SNARE-Interacting Proteins
    Quarterly Reviews of Biophysics 38, 1 (2006), pp. 1–47. f 2005 Cambridge University Press 1 doi:10.1017/S0033583505004051 Printed in the United Kingdom First published online 9 December 2005 Structure and functionof SNARE and SNARE-interacting proteins Axel T. Brunger Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA 94305, USA Abstract. This review focuses on the so-called SNARE (soluble N-ethyl maleimide sensitive factor attachment protein receptor) proteins that are involved in exocytosis at the pre-synpatic plasma membrane. SNAREs play a role in docking and fusion of synaptic vesicles to the active zone, as well as in the Ca2+-triggering step itself, most likely in combination with the Ca2+ sensor synaptotagmin. Different SNARE domains are involved in different processes, such as regulation, docking, and fusion. SNAREs exhibit multiple configurational, conformational, and oliogomeric states. These different states allow SNAREs to interact with their matching SNARE partners, auxiliary proteins, or with other SNARE domains, often in a mutually exclusive fashion. SNARE core domains undergo progressive disorder to order transitions upon interactions with other proteins, culminating with the fully folded post-fusion (cis) SNARE complex. Physiological concentrations of neuronal SNAREs can juxtapose membranes, and promote fusion in vitro under certain conditions. However, significantly more
    [Show full text]