Biogeosciences, 18, 3087–3101, 2021 https://doi.org/10.5194/bg-18-3087-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Methane oxidation in the waters of a humic-rich boreal lake stimulated by photosynthesis, nitrite, Fe.III/ and humics Sigrid van Grinsven1;, Kirsten Oswald1,2;, Bernhard Wehrli1,2, Corinne Jegge1,3, Jakob Zopfi4, Moritz F. Lehmann4, and Carsten J. Schubert1,2 1Department of Surface Waters – Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Swiss Federal Institute of Technology, Zurich, Switzerland 3School of Architecture, Civil and Environmental Engineering, EPFL, Swiss Federal Institute of Technology, Lausanne, Switzerland 4Department of Environmental Sciences, Aquatic and Stable Isotope Biogeochemistry, University of Basel, Basel, Switzerland These authors contributed equally to this work. Correspondence: Sigrid van Grinsven (
[email protected]) and Carsten J. Schubert (
[email protected]) Received: 11 January 2021 – Discussion started: 28 January 2021 Revised: 7 April 2021 – Accepted: 22 April 2021 – Published: 20 May 2021 Abstract. Small boreal lakes are known to contribute sig- cess in CH4 removal in the water column of humic, turbid nificantly to global CH4 emissions. Lake Lovojärvi is a eu- lakes, thereby limiting diffusive CH4 emissions from boreal trophic lake in southern Finland with bottom water CH4 con- lakes. Yet, it also highlights the potential importance of a centrations up to 2 mM. However, the surface water concen- whole suite of alternative electron acceptors, including hu- tration, and thus the diffusive emission potential, was low mics, in these freshwater environments in the absence of light (< 0.5 µM).