Evaluating the Environmental Performance of Wood-Based Biofuels

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating the Environmental Performance of Wood-Based Biofuels Introduction to Special Issue Evaluating the Environmental Performance of Wood-Based Biofuels Bruce Lippke Richard Bergman Adam Taylor Maureen E. Puettmann The nonprofit Consortium for Research on Renewable In this issue of the Forest Products Journal, the research Industrial Materials (CORRIM) has been developing findings are reported for a range of potential biofuel uses of comprehensive environmental performance information on wood in conjunction with the production of products. wood building materials consistent with life-cycle standards Biofuels and wood products are generally coproducts of (http://www.corrim.org/). The articles published in this sustainable forest management requiring consideration for Special Issue of the Forest Products Journal extend the their relative efficiencies under different production alter- research by the CORRIM group on the environmental natives. Because operational-scale production facilities do performance of wood products to include the impacts from not yet exist for liquid biofuels, the data have been derived the uses of wood as a source for bioenergy. from processing models instead of primary mill surveys. The earlier work, published in two special issues of Wood University cooperators customized NREL processing mod- and Fiber Science (CORRIM 2005, 2010), developed the els and incorporated models of biofuel feedstock collection inputs and outputs for each stage of processing wood based on CORRIM’s prior work to measure the impact of products through the final use of building materials. Life- collecting industrial roundwood. There are many different cycle inventory (LCI) tables were produced for forest woody biomass feedstock options and processing methods. regeneration and harvesting in the Pacific Northwest, To obtain the best input for the boundaries and scope of the Southeast (SE), Northeast/North Central (including both project within the available financial resources, a planning softwoods and hardwoods), and Inland Northwest, carried workshop attended by experts in the field was held in through to the production of softwood and hardwood October of 2008. A scope of work and work plan was lumber, hardwood flooring, plywood, oriented strand board developed that provided a range of the more important (OSB)–SE, glulam beams, laminated veneer lumber (LVL), collection and processing options. I-joists, and trusses. The processing LCIs were based on The planning workshop determined the following woody primary data surveys of a sample from mills in each region. biomass feedstock options to be most important: Two large-volume, nonstructural products, particleboard Short rotation woody crops (SRWC) to demonstrate the and medium-density fiberboard, were also included. An LCI impact of high yields for US-produced resins used in engineered wood and Forest residuals (forest waste) generated in conjunction composite products was also developed and is being used with harvesting for products to update the LCI for products using resins. The primary product database was uploaded to the US LCI database managed by the National Renewable Energy Laboratory The authors are, respectively, Professor Emeritus, College of (NREL), where the LCI data for nonwood materials as well Environment, School of Environmental and Forest Sci., Univ. of as CORRIM’s data on wood materials can be accessed Washington, Seattle ([email protected] [corresponding author]); (NREL 2011). Research Forest Products Technologist, USDA Forest Service, The earlier work also included life-cycle assessments Forest Products Lab., Madison, Wisconsin ([email protected]); (LCAs) for the use of wood products in residential framing, Associate Professor and Wood Products Extension Specialist, Univ. of Tennessee, Knoxville ([email protected]); and Consultant, providing a useful comparison for the efficiency of using WoodLife Environmental Consulting, LLC, Corvallis, Oregon wood in construction products to reduce carbon emissions as ([email protected]). This paper was received for publica- a contrast to using biofuels to reduce emissions (http://www. tion in February 2012. Article no. 12-00014. corrim.org/pubs/articles/2006/FPJproductSubs.pdf, http:// ÓForest Products Society 2012. www.corrim.org/pubs/articles/2004/FPJ_Sept2004.pdf). Forest Prod. J. 62(4):244–246. 244 LIPPKE ET AL. Whole tree handling of thinnings labels, EPDs are attached to the product being sold. Thinnings for high fire-risk areas Therefore, depending on the end-market, e.g., business or Customized equipment technologies to reduce the cost of consumer, the label is readily available to make a decision at collection the time of purchase (Bergman and Taylor 2011). Pellets production important to smaller scale collection Another communication effort was recently conducted use or for processing with long transportation hauls with support from the US Department of Agriculture Forest Processing options are as follows: Service Wood and Education Resource Center. The project resulted in a brochure describing the carbon impact of wood Three liquid fuel alternatives products with respect to nonwood alternatives. The brochure * Biochemical fermentation to ethanol compared with provides detailed results on the carbon impacts associated gasoline with wood building products: cradle-to-gate manufacturing, * Thermochemical gasification to ethanol compared with woody biomass, carbon storage in the final product, and the gasoline substitution of wood for nonwood products (http://www. * Pyrolysis to biofuel compared with residual fuel oil wwpinstitute.org/documents/CIWPpub.pdf). Cogeneration of electricity compared with fossil fuel Webinar training sessions to familiarize users with the feedstocks data have also been promoted (http://www.forestrywebinars. Increased biofuel use in wood processing mills to net/webinars/the-carbon-impact-of-forest-products/ displace natural gas for drying ?searchterm¼None). Pellet production impacts on heat and power efficiency Because of widespread interest on reducing carbon relative to other feedstocks emissions, CORRIM has in earlier articles tracked carbon SRWC were used in fermentation processing because it is impacts for functional units (e.g., houses and specific a wet process and is best aligned with the high moisture products) and for forest acres used to supply wood products. content of the feedstock. Whole tree handling of commer- These latter, forest-supply analyses include a wide range of cial thinnings was evaluated with gasification and pyrolysis. stands supporting sustainable regeneration, harvest, produc- Collection of forest residuals was evaluated with gasifica- tion of wood products, product use, end-of-life disposal, or tion because this process was expected to be robust to the recycling. This Special Issue includes articles that integrate wider quality range of the feedstock. the impact of producing wood products and biofuels CORRIM research guidelines require conformity to life- (coproducts from the forest) to sustainable forest resource cycle protocols including specification of purpose, func- management and production based on the findings from tional unit, boundaries, data categories, collection proce- other articles in this issue covering biofuel feedstock dures, and quality assessments (http://www.corrim.org/ collection and processing alternatives. Consistent carbon pubs/reports/2005/Phase1/CORRIMResProtocents.pdf). impact measures per unit of biofuel produced or per hectare CORRIM’s board and invited experts in the field provided of supply are reported. This closes one of the important technical reviews on the research plans. CORRIM’s Web- research gaps identified in prior research: the failure to based research reports were reviewed by international LCI/ account for the potential carbon benefits from using wood LCA experts for consistency with CORRIM’s research residuals as well as the benefits from using wood products. guidelines and standards (http://www.corrim.org/pubs/ With the data presented here, it becomes possible to reports/2005/Phase1/MainRepAugust24.pdf). Peer reviews quantify the benefits of the additional use of biofuel sources have also been completed for all journal publications. CORRIM’s biofuel research has continued to require strict such as logging residues, thinnings, and short rotation crops. adherence to life-cycle protocols. A continued need for LCI/LCA is expected because it CORRIM’s LCI research on products and biofuels has provides a way to scientifically measure environmental been largely focused on developing a database and burdens; however, the growing use and need for LCI/LCA evaluation methods for determining options for environ- may lead to new applications and requirements. The Energy mental improvement. We believe that this information Independence and Security Act of 2007 (EISA 2007) now should now be made available, and made useful, for requires biofuels to achieve minimum federal standards in educators, policy makers, and industry. With this in mind, displacing fossil fuels. These emission standards, based on interactive videos covering many of these research projects LCA, will likely support the use of cellulosic ethanol over were collected from presentations at the Forests Product alternative fuels. More importantly, these standards will Society’s International Convention (http://www.corrim.org/ likely generate substantial change in how environmental presentations/video/2011/FPS_Biomass/index.asp). data are developed and how carbon markets and other Early steps in helping to translate LCI research for
Recommended publications
  • What Is Still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector
    applied sciences Review What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector Monica Padella *, Adrian O’Connell and Matteo Prussi European Commission, Joint Research Centre, Directorate C-Energy, Transport and Climate, Energy Efficiency and Renewables Unit C.2-Via E. Fermi 2749, 21027 Ispra, Italy; [email protected] (A.O.); [email protected] (M.P.) * Correspondence: [email protected] Received: 16 September 2019; Accepted: 15 October 2019; Published: 24 October 2019 Abstract: Ethanol production from cellulosic material is considered one of the most promising options for future biofuel production contributing to both the energy diversification and decarbonization of the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to conventional (or first generation) ethanol production from food and feed crops (mainly sugar and starch based crops), cellulosic (or second generation) ethanol provides better performance in terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change. However, despite the policy support (in terms of targets) and significant R&D funding in the last decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited. The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU and outside EU, reviewing available literature and highlighting technical and non-technical barriers that still limit its production at commercial scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized by technical difficulties as well as high production costs.
    [Show full text]
  • Fundamental Studies on Wood/Cellulose-Plastic Composites
    J Wood Sci (2007) 53:470–480 © The Japan Wood Research Society 2007 DOI 10.1007/s10086-007-0889-5 ORIGINAL ARTICLE Rashmi Kumari · Hirokazu Ito · Masahiro Takatani Miho Uchiyama · Tadashi Okamoto Fundamental studies on wood/cellulose–plastic composites: effects of composition and cellulose dimension on the properties of cellulose/PP composite Received: September 6, 2006 / Accepted: February 9, 2007 / Published online: May 29, 2007 Abstract Although wood/cellulose–plastic composites Introduction (WPC) of low wood/cellulose content have been more ac- cepted worldwide and are promoted as low-maintenance, high-durability building products, composites containing In recent years, interest in composites based on renewable high wood/cellulose content are not yet developed on an materials has grown tremendously because of social re- industrial scale. In this study, fl ow properties, mechanical quests for low environmental stress, low-maintenance and properties, and water absorption properties of the com- high-durability products, and ultraviolet (UV) durability.1–3 pounds of cellulose microfi ber/polypropylene (PP) and Construction, transportation, industrial, and consumer ap- maleic anhydride-grafted polypropylene (MAPP) were in- plications for wood/cellulose–plastic composites (WPC) are vestigated to understand effects of the high cellulose con- all on the rise. WPC have been primarily produced with a tent and the dimensions of the cellulose microfi ber. The low and medium percentage of wood/cellulose. Products molding processes studied included compression, injection, typically contain approximately 50% (by weight) wood/ and extrusion. It was found that fl uidity is not only depen- cellulose, although some composites contain very little dent on resin content but also on the dimension of the fi ller; wood/cellulose and others as much as 60%.1,4–7 Wood/ fl uidity of the compound declined with increased fi ber cellulose content may range from 70% to 90% and the length with the same resin content.
    [Show full text]
  • The Sustainability of Cellulosic Biofuels
    The Sustainability of Cellulosic Biofuels All biofuels, by definition, are made from plant material. The main biofuel on the U.S. market is corn ethanol, a type of biofuel made using the starch in corn grain. But only using grain to produce biofuels can lead to a tug of war between food and fuel sources, as well as other environmental and economic challenges. Biofuels made from cellulosic sources – the leaves, stems, and other fibrous parts of a plant – have been touted as a promising renewable energy source. Not only is cellulose the most abundant biological material on Earth, but using cellulose to produce biofuels instead of grain can have environmental benefits. Cellulosic biofuel sources offer a substantially greater energy return on investment compared to grain-based sources. However, environmental benefits are not guaranteed. The environmental success of cellulosic biofuels will depend on 1) which cellulosic crops are grown, 2) the practices used to manage them, and 3) the geographic location of crops. Both grain-based and cellulosic biofuels can help lessen our use of fossil fuels and can help offset carbon dioxide emissions. But cellulosic biofuels are able to offset more gasoline than can grain-based biofuels – and they do so with environmental co-benefits. Cellulosic Biofuels Help Reduce Competition for Land Cellulosic fuel crops can grow on lands that are not necessarily suitable for food crops and thereby reduce or avoid food vs. fuel competition. If grown on land that has already been cleared, cellulosic crops do not further contribute to the release of carbon to the atmosphere. Because many cellulosic crops are perennial and roots are always present, they guard against soil erosion and better retain nitrogen fertilizer.
    [Show full text]
  • The Miracle Resource Eco-Link
    Since 1989 Eco-Link Linking Social, Economic, and Ecological Issues The Miracle Resource Volume 14, Number 1 In the children’s book “The Giving Tree” by Shel Silverstein the main character is shown to beneÞ t in several ways from the generosity of one tree. The tree is a source of recreation, commodities, and solace. In this parable of giving, one is impressed by the wealth that a simple tree has to offer people: shade, food, lumber, comfort. And if we look beyond the wealth of a single tree to the benefits that we derive from entire forests one cannot help but be impressed by the bounty unmatched by any other natural resource in the world. That’s why trees are called the miracle resource. The forest is a factory where trees manufacture wood using energy from the sun, water and nutrients from the soil, and carbon dioxide from the atmosphere. In healthy growing forests, trees produce pure oxygen for us to breathe. Forests also provide clean air and water, wildlife habitat, and recreation opportunities to renew our spirits. Forests, trees, and wood have always been essential to civilization. In ancient Mesopotamia (now Iraq), the value of wood was equal to that of precious gems, stones, and metals. In Mycenaean Greece, wood was used to feed the great bronze furnaces that forged Greek culture. Rome’s monetary system was based on silver which required huge quantities of wood to convert ore into metal. For thousands of years, wood has been used for weapons and ships of war. Nations rose and fell based on their use and misuse of the forest resource.
    [Show full text]
  • For Cellulosic Ethanol Production 1 DESCRIPTION of the Formicobio
    Appendix 1 formicobio™ technology 1 (2) for cellulosic ethanol production 1 DESCRIPTION OF THE formicobio™ TECHNOLOGY Chempolis’ formicobio™ is a technology for the production of cellulosic sugars and further ethanol. The technology has been specially developed for non-food raw materials (e.g. bamboo, bagasse, straws, oil palm biomass, and other agricultural residues), and it is based on selective fractionation of biomass with fully recoverable biosolvent containing formic acid. The formicobio™ technology avoids the main problems associated with other technologies developed for non-food raw materials and represents a true third- generation (3G) technology for the production of cellulosic sugars and further ethanol. The technology enables co-production of platform chemicals, such as acetic acid and furfural, which are used as raw materials in the production of paints, adhesives, and plastics, and as solvent and raw material for resins. Furfural can also be converted into synthetic diesel or gasoline ingredient by hydrogenation. In addition, combustion of co-produced solid biofuel (biocoal) can generate all the energy needed in biorefinery, with some surplus to be used in other production. The formicobio™ technology offers two principal options for the production of cellulosic ethanol: a) Production of ethanol from cellulose and chemicals from hemicelluloses b) Production of ethanol from cellulose and hemicelluloses with co-production of chemicals from hemicelluloses The principle of the technology (Option a) has been described as a simple block diagram in the picture below. The main steps in the process are the following: ‐ Selective fractionation of biomass with a fully recoverable biosolvent (i.e. formicodeli™). Fractionation takes place in a much lower temperature and pressure than pretreatment in typical 2G technologies.
    [Show full text]
  • Annual Biodiesel and Renewable Di
    141.422 Definitions for KRS 141.422 to 141.425. As used in KRS 141.422 to 141.425: (1) "Annual biodiesel and renewable diesel tax credit cap" means: (a) For calendar years beginning prior to January 1, 2008, one million five hundred thousand dollars ($1,500,000); (b) For the calendar year beginning on January 1, 2008, five million dollars ($5,000,000); (c) For calendar years beginning on or after January 1, 2009, but before January 1, 2021, ten million dollars ($10,000,000); (2) "Annual biodiesel, renewable diesel, and renewable chemical production tax credit cap" means, for calendar years beginning on or after January 1, 2021, ten million dollars ($10,000,000); (3) "Annual cellulosic ethanol tax credit cap" means five million dollars ($5,000,000), unless the annual cellulosic ethanol tax credit cap is modified pursuant to KRS 141.4248, in which case the cap established by KRS 141.4248 shall be the annual cellulosic ethanol tax credit cap for that year. Any adjustments to the annual cellulosic ethanol tax credit cap made pursuant to KRS 141.4248 shall be made on an annual basis and shall not carry forward to subsequent years; (4) "Annual ethanol tax credit cap" means five million dollars ($5,000,000), unless the annual credit cap is modified pursuant to KRS 141.4248, in which case the cap established by KRS 141.4248 shall be the annual ethanol tax credit cap for that year. Any adjustments to the annual ethanol tax credit cap made pursuant to KRS 141.4248 shall be made on an annual basis and shall not carry forward to subsequent years;
    [Show full text]
  • Engineered Wood Installation 3/8” Or 1/2” Tongue & Groove: Float, Nail/Staple & Full Spread Gluedown Read These Instructions Completely Before Beginning Installation
    ENGINEERED WOOD INSTALLATION 3/8” OR 1/2” TONGUE & GROOVE: FLOAT, NAIL/STAPLE & FULL SPREAD GLUEDOWN READ THESE INSTRUCTIONS COMPLETELY BEFORE BEGINNING INSTALLATION. GENERAL INFORMATION Smoking by individuals exposed to asbestos fibers greatly increases the risk of serious ATTENTION INSTALLERS bodily harm. Unless positively certain that the existing in-place product is a non- asbestos-containing material, you must presume it contains asbestos. Regulations WARNING: Installation of wood product may create wood dust, which is may require that the material be tested to determine asbestos content and may known to the state of California to cause cancer. Avoid inhaling wood dust or govern removal and disposal of material. See current edition of the Resilient Floor use a dust mask or other safeguards for personal protection. Covering Institute (RFCI) publication Recommended Work Practices for Removal Sawing, sanding and machining wood products can produce of Resilient Floor Coverings for instructions on removing all resilient floor covering wood dust. Airborne wood dust can cause respiratory, eye and structures. skin irritation. The International Agency for Research on Cancer If you have technical or installation questions please call 1-800-258-5758 (IARC) has classified wood dust as a nasal carcinogen in humans. IMPORTANT HEALTH NOTICE FOR RESIDENTS OF MINNESOTA ONLY: Precautionary Measures: If power tools are used, they should be equipped THESE BUILDING MATERIALS EMIT FORMALDEHYDE. EYE, NOSE, AND with a dust collector. If high dust levels are encountered, use an appropriate THROAT IRRITATION, HEADACHE, NAUSEA AND A VARIETY OF ASTHMA- NIOSH-designated dust mask. Avoid dust contact with eye and skin. LIKE SYMPTOMS, INCLUDING SHORTNESS OF BREATH, HAVE BEEN First Aid Measures in Case of Irritation: In case of irritation, flush eyes REPORTED AS A RESULT OF FORMALDEHYDE EXPOSURE.
    [Show full text]
  • WOOD | Natural Woodchips™
    WOOD | Natural WoodChips™ TORGINOL® Natural WoodChips™ are manufactured from a range of premium quality natural and engineered wood veneer species. 4617 South Taylor Drive Reclaim your environment with the holistic serenity of organic wood. Sheboygan, WI 53081 | USA TORGINOL® Natural WoodChips™ will enhance your environment (920) 694-4800 [email protected] | www.torginol.com with ecological simplicity. This innovative wood flooring solution combines the hygienic benefits of seamless flooring with nature’s TYPICAL WOOD SYSTEM elegant wood grains, sustaining a timeless appeal for the life of your floor. PERFORMANCE SPECIFICATIONS Color (Natural) Visual Evaluation (ASTM D4086) Pass * Dry Film Thickness Micrometer (ASTM D1005) 6 - 8 mils TMTM Shape Visual Evaluation (ASTM D4086) Random PROTECTIVE TOPCOAT Odor Olfactory (ASTM D1296) Odorless CLEAR GROUT COAT Moisture Content (< 5%) Moisture Meter (ASTM D4442) Pass NATURAL WOODCHIPS Size Distribution (~3/8”) Normal Sieve Analysis (ASTM C136) Pass PIGMENTED BASECOAT COVERAGE RATE GUIDELINES PRIMER/SEALER Type Size Full Coverage CONCRETE All ~ 3/8” 15 - 20 SF / LB *For best results, a sanding coat is recommended Coverage rates may vary depending on customer preferences and application techniques. prior to applying the final topcoat(s). WOOD SPECIES LIMITATIONS A Natural Product Wood is a natural material and may not be uniform in appearance. Natural variations in the characteristics of individual pieces W1010 / HONEY MAPLE W1000 / POWDERED ASPEN W2010 / WHITE ASH should not be considered defects. The color and grain variations contribute to the wood veneer’s unique character and beauty. Aging and Light Exposure W1015 / WINTER BIRCH W1040 / CLASSIC MAHOGANY W2015 / AGED HICKORY Wood ages naturally over time as it is exposed to light and other environmental elements.
    [Show full text]
  • The Implications of Increased Use of Wood for Biofuel Production
    Date Issue Brief # ISSUE BRIEF The Implications of Increased Use of Wood for Biofuel Production Roger A. Sedjo and Brent Sohngen June 2009 Issue Brief # 09‐04 Resources for the Future Resources for the Future is an independent, nonpartisan think tank that, through its social science research, enables policymakers and stakeholders to make better, more informed decisions about energy, environmental, natural resource, and public health issues. Headquartered in Washington, DC, its research scope comprises programs in nations around the world. 1616 P Street NW Washington, DC 20036 202-328-5000 www.rff.org PAGE 2 SEDJO AND SOHNGEN | RESOURCES FOR THE FUTURE The Implications of Increased Use of Wood for Biofuel Production Roger A. Sedjo and Brent Sohngen1 Introduction The growing reliance in the United States and many other industrial countries on foreign petroleum has generated increasing concerns. Since the 1970s, many administrations have called for energy independence, with a particular focus on petroleum. Although energy sources are many, the transport sector is driven largely by petroleum. Despite calls for reduced oil imports, the United States increasingly depends on foreign supply sources. General concerns about the security of petroleum supply are compounded by added concerns about the emissions of greenhouse gases (GHGs) from fossil energy, including petroleum. While the United States did not ratify the Kyoto Protocol, efforts are increasing to find alternatives to petroleum as the dominant transport fuel. The major impediment to alternative fuels is generally their higher costs as well as the existing infrastructure, which has been developed to facilitate a petroleum‐driven economy. Europe is moving to supplement fossil fuel use with renewables, including biomass and particularly wood, in energy and heating functions in part through direct and indirect subsidies (e.g., Sjolie et al.
    [Show full text]
  • A Future Vision for Optimally Using Wood and Biomass
    June 2008:Forest Products 6/5/08 9:09 PM Page 6 Integrated Biomass Technologies: AA Future Future Vision Vision for for Optimally Using Abstract Exciting new opportunities are emerging for sustainably meeting many global energy needs and simultaneously creating high­value bio­based consumer and construction products from wood, forest and agricultural residues, and other bio­based materials. In addition to traditional value­added bio­ based products, such as lumber, paper, paperboard, and composites, opportunities are now on the hori­ zon for biorefining to produce electricity, transportation fuels, chemical feedstocks, syngas, and nanocrystalline cellulose. In the near future, nanocrystalline cellulose, produced as a high­value by­prod­ uct from the biorefining process, could likely compete with carbon fiber for use in innovative high­ strength biocomposites. The holistic view of how to achieve both traditional and new high­value materi­ als with enhanced performance properties from renewable resources is called Integrated Biomass Technologies. This concept promotes the use of sustainable, bio­based, environmentally neutral (or even beneficial) technologies to meet global demands for building and materials end uses, chemicals, and energy. This concept provides a systematic approach for maximizing value, performance, resource sus­ tainability, and improving profitability in the agriculture and forest products industries. 6 JUNE 2008 June 2008:Forest Products 6/5/08 9:09 PM Page 7 By Jerrold E. Winandy, Alan W. Rudie, R. Sam Williams, and Theodore H. Wegner WoodWood andand BiomassBiomass The agricultural sector has made significant progress them are regarded as carbon neutral, releasing into in developing bio­based fuels and chemicals. Today, the the atmosphere only the amount of CO originally 2 dominant feedstock for ethanol transportation fuel is fer­ sequestered by the plant to produce the biomass.
    [Show full text]
  • The Number One Wood Floor for Concrete Installation the TOUGH QUESTIONS
    Questions? 800.595.9663 or wideplankflooring.com The Number One Wood Floor for Concrete Installation THE TOUGH QUESTIONS Don’t be afraid to ask us or any other Myths & Misconceptions flooring provider: • Can you install your floors direct to a Concrete slabs are one of the most common subfloor systems used today for residential and concrete slab? commercial construction. Unfortunately, it is a common misconception that you cannot install • Do I have to use a floating floor a wood floor on top of a concrete slab. This can be discouraging if you've had your heart set when installing to a concrete slab? on the look of wide plank floors. • Am I limited to a certain species The good news is Carlisle has been installing wide plank floors in conjunction with a concrete if I install your wood floors on a slab for over 45 years. Our floors exhibit the highest level of quality in the industry, which concrete slab? means they outperform other wood flooring available on the market. So you can get a floor • Do I have to use quartersawn wood that looks beautiful, and performs the best when installed with a concrete slab. when I install your wood floors on a Don't compromise the look of your floor because of industry myths and misconceptions. concrete slab? Learn more about what makes Carlisle wood floors more stable and get the look you have • Do I have to use an engineered been dreaming of for your project. floor if I install your wood floors on a concrete slab? Hundreds of Floors and Counting • Can I use a solid wood if I install your From Texas ranches, luxury retail stores, and boutique hotels, Carlisle floors have been wood floors on a concrete slab? installed direct to a concrete slab in hundreds of projects all over the worlds.
    [Show full text]
  • Biomass Energy in Pennsylvania: Implications for Air Quality, Carbon Emissions, and Forests
    RESEARCH REPORT Biomass Energy in Pennsylvania: Implications for Air Quality, Carbon Emissions, and Forests Prepared for: Prepared by: December 2012 The Heinz Partnership for Endowments Public Integrity Pittsburgh, PA by Mary S. Booth, PhD The Biomass Energy in Pennsylvania study was conducted by Mary S. Booth, PhD, of the Partnership for TABLE OF CONTENTS Policy Integrity. It was funded by the Heinz 4 Executive Summary Endowments. 4 Central findings 8 Recommendations 10 Chapter 1: Biomass Energy — The National Context 11 The emerging biomass power industry 11 Cumulative demand for “energy wood” nationally 14 Chapter 2: Carbon Emissions from Biomass Power 15 The Manomet Study 18 Chapter 3: Pollutant Emissions from Biomass Combustion 19 Particulate matter 20 Particulate matter emissions from small boilers 20 Use of pellets to reduce emissions and the carbon dilemma 22 Particulate matter controls for large boilers 22 Controls for other pollutants 24 Chapter 4: Biomass Combustion Impacts on Human Health 25 Special characteristics of biomass emissions 26 Diesel emissions from biomass harvesting and transport 27 Chapter 5: Policy Drivers for Biomass Power in Pennsylvania 28 Bioenergy in Pennsylvania’s Alternative Energy Portfolio Standard 29 Pennsylvania’s Climate Action Plan 30 Blue Ribbon Task Force on the low-use wood resource 31 Financial incentives for biomass and pellet facilities 31 Pennsylvania’s “Fuels for Schools and Beyond” program 32 Penn State University’s Biomass Energy Center 33 Chapter 6: Biomass Supply and Harvesting in Pennsylvania
    [Show full text]