Lecture Notes on Homological Algebra Hamburg SS 2019

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes on Homological Algebra Hamburg SS 2019 Lecture notes on homological algebra Hamburg SS 2019 T. Dyckerhoff June 17, 2019 Contents 1 Chain complexes 1 2 Abelian categories 6 3 Derived functors 15 4 Application: Syzygy Theorem 33 5 Ext and extensions 35 6 Quiver representations 41 7 Group homology 45 8 The bar construction and group cohomology in low degrees 47 9 Periodicity in group homology 54 1 Chain complexes Let R be a ring. A chain complex (C•; d) of (left) R-modules consists of a family fCnjn 2 Zg of R-modules equipped with R-linear maps dn : Cn ! Cn−1 satisfying, for every n 2 Z, the condition dn ◦ dn+1 = 0. The maps fdng are called differentials and, for n 2 Z, the module Cn is called the module of n-chains. Remark 1.1. To keep the notation light we usually abbreviate C• = (C•; d) and simply write d for dn. Example 1.2 (Syzygies). Let R = C[x1; : : : ; xn] denote the polynomial ring with complex coefficients, and let M be a finitely generated R-module. (i) Suppose the set fa1; a2; : : : ; akg ⊂ M generates M as an R-module, then we obtain a sequence of R-linear maps ' k ker(') ,! R M (1.3) 1 k 1 where ' is defined by sending the basis element ei of R to ai. We set Syz (M) := ker(') and, for now, ignore the fact that this R-module may depend on the chosen generators of M. Following D. Hilbert, we call Syz1(M) the first syzygy module of M. In light of (1.3), every element of Syz1(M), also called syzygy, can be interpreted as a relation among the chosen generators of M as follows: every element 1 of r 2 Syz (M) can be expressed as an R-linear combination λ1e1 +λ2e2 +···+λkek of the basis elements of Rk. The fact that, by definition, '(r) = 0, now reads as the equation λ1m1 + λ2m2 + ··· + λkmk = 0 which is a relation between the generators fmig in M. (ii) By Hilbert's basis theorem, the module Syz1(M) is again finitely generated, so we may choose a set fb1; b2; : : : ; blg of generators. Repeating (1), we obtain a sequence of R-linear maps l ker( ) ,! R M (1.4) l 2 where is defined by sending the basis element ei of R to bi. We set Syz (M) := ker( ), called the second syzygy module of M. In light of (1.3) and (1.4), every element of Syz2(M), also called second syzygy, can be interpreted as a relation among the relations among generators of M. (iii) We can reiterate this procedure ad infinitum. Piecing together the sequences (1.3), (1.4), . , we obtain a sequence of R-linear maps 2 Syz (M n ) (1.5) ? ? d d d ··· / Rm / Rl / Rm ? / Syz1(M) which, by construction, satisfies d2 = 0. The chain complex C = (C•; d) of free R-modules constructed in (1.5) is called a free resolution of M. Note that, by construction, C comes equipped with a surjective map C0 ! M called augmentation map. Hilbert's phisolophy behind the construction of the sequence of higher syzygies is that, while the original module M may be very complicated, the modules Syzk(M) become easier to understand as k increases. This statement is made precise in his famous syzygy theorem1: Every finitely generated R-module M admits a free resolution of length ≤ n. We will give a proof a local variant of this theorem in the course. Hilbert's original proof was very explicit, our proof will be a corollary of a fairly abstract modern theory. 1Hilbert stated and proved this theorem under the additional assumption that M is a graded R- module. The statement is true in general but relies on a deep theorem of Quillen and Suslin which says that every finitely generated projective module over a polynomial ring is free. 2 Example 1.6 (Simplicial complexes). Let N be a natural number. An (abstract) sim- plicial complex K on [N] := f0; 1;:::;Ng is a collection of subsets of [N] such that • if σ 2 K and τ ⊂ σ, then τ 2 K. One thinks of the collection of all subsets of [N] as corresponding to all subsimplices of a geometric N-dimensional simplex ∆N . A simplicial complex K on [N] then corresponds to a union of subsimplices in ∆N . For every n ≥ 0, we introduce the set Kn := fσ 2 K jσj = n + 1g of n-simplices in K. Any σ 2 Kn can be uniquely expressed as σ = fx0; x1; : : : ; xng with x0 < x1 < ··· < xn. We then define, for every 0 ≤ i ≤ n, the face map @i : Kn −! Kn−1; σ 7! fx0; : : : ; xi−1; xi+1; : : : ; xng: Let R be a ring and define M Cn(K; R) := Reσ σ2Kn the free R-module on the set Kn whose basis elements we label by feσg. We define differentials n X i dn : Cn(K; R) −! Cn−1(K; R); eσ 7! (−1) e@iσ i=0 where, as Cn(K; R) is a free R-module, it suffices to specify the map dn on a the basis 2 feσg. By explicit verification we have d = 0 and hence we obtain a chain complex (C•(K; R); d) called the simplicial chain complex of K with coefficients in R. As an explicit example, consider the simplicial complex on [2] given by the collection of subsets ff0; 1g; f1; 2g; f0; 2g; f0g; f1g; f2g; ;g: The corresponding simplicial chain complex with coefficients in the ring Z has two non- zero components given by C1(K; Z) = Zef0;1g ⊕ Zef1;2g ⊕ Zef0;2g and C0(K; Z) = Zef0g ⊕ Zef1g ⊕ Zef2g while the differential d : C1 ! C0 is given, with respect to the indicated basis, by the matrix 0−1 0 −11 @ 1 −1 0 A : 0 1 1 Note that, by convention, we omit the trivial modules of n-chains corresponding to the zero R-module. Example 1.7 (Cyclic bar complex). Let k be a field, and let A be an associative k- algebra. We define, for every n ≥ 0, the k-vector space Cn(A) = A ⊗k A ⊗k · · · ⊗k A | {z } n + 1 copies 3 given by iterating the above tensor product construction. This construction only depends on the k-vector space structure underlying A. Further, we define maps d : Cn(A) ! Cn−1(A) by k-linearly extending the formula d(a0 ⊗ a1 ⊗ · · · ⊗ an) = (a0a1) ⊗ a2 ⊗ · · · ⊗ an n−1 X i + (−1) a0 ⊗ · · · ⊗ (aiai+1) ⊗ · · · ⊗ an i=1 n + (−1) (ana0) ⊗ a1 ⊗ · · · ⊗ an−1: 2 An explicit computation shows d = 0. We obtain a chain complex (C•(A); d) of k-vector spaces called the cyclic bar complex of A. We introduce some terminology: Given a chain complex C• of R-modules, we call Zn := ker(dn) the module of n-cycles, and Bn := im(dn+1) the module of n-boundaries. Note that Bn ⊂ Zn ⊂ Cn so that we can further define the quotient module Hn(C•) := Zn=Bn; called the nth homology module of C•. The chain complex C• is called exact at n 2 Z, if ∼ Hn(C•) = 0. Example 1.8. (1) Let R = C[x1; : : : ; xn] be the polynomial ring, M a finitely gener- ated R-module and C• the free resolution of M as defined above. Then we have ( ∼ M for i = 0, Hi(C•) = 0 for i 6= 0. (2) Let K be a simplicial complex with corresponding simplicial chain complex C•(K; R) with coefficients in a ring R. The homology modules Hi(C•(K; R)) are called sim- plicial homology of K with coefficients in R. These modules, and variants, are of central importance in algebraic topology. In the explicit example above, given by the boundary of a 2-simplex, we have ( ∼ Z for i = 0; 1, Hi(C•(K; Z)) = 0 otherwise. (3) Let A be an associative k-algebra. The homology modules of the cyclic bar complex C•(A) are called Hochschild homology. Their calculation is in general very involved, but, for example if A is a finitely generated, commutative k-algebra satisfying a cer- tain smoothness condition, then the so-called Hochschild-Kostant-Rosenberg theo- rem states that, for all i ≥ 0, we have ∼ i Hi(C•(A)) = ΩA=k i where ΩA=k denotes the module of K¨ahlerdifferentials of A over k. 4 Given a chain complex C• of R-modules, we introduced, for every n, modules of cycles Zn = ker(dn), boundaries Bn = im(dn+1), and the homology module given by the quotient ∼ Hn(C•) = Zn=Bn. We say that C• is exact at n 2 Z, if Hn(C•) = 0. Convention 1.9. We say that a sequence d d d d Ck −! Ck−1 −! ::: −! Cl−1 −! Cl 2 of R-modules with d = 0 is exact if Hn(C•) = 0 for all l < n < k. Note the strict inequality so that no exactness condition is required at the end terms l and k. Example 1.10. An exact sequence of the form f g 0 −! A −! B −! C −! 0 is called short exact sequence. The exactness conditions translate into the requirements that f be injective, g be surjective, and ker(g) = im(f). The sequence 2 0 −! Z −! Z −! Z=2Z −! 0 of abelian groups is a short exact sequence. The sequence 2 Z=4Z −! Z=4Z −! Z=2Z −! 0 is exact but can not be extended to form a short exact sequence, since the map given by multiplication by 2 is not injective. A key insight of modern mathematics is that, to understand any class of objects of a certain kind, one ought to understand what kind of maps to allow between these objects.
Recommended publications
  • Homological Algebra
    Homological Algebra Donu Arapura April 1, 2020 Contents 1 Some module theory3 1.1 Modules................................3 1.6 Projective modules..........................5 1.12 Projective modules versus free modules..............7 1.15 Injective modules...........................8 1.21 Tensor products............................9 2 Homology 13 2.1 Simplicial complexes......................... 13 2.8 Complexes............................... 15 2.15 Homotopy............................... 18 2.23 Mapping cones............................ 19 3 Ext groups 21 3.1 Extensions............................... 21 3.11 Projective resolutions........................ 24 3.16 Higher Ext groups.......................... 26 3.22 Characterization of projectives and injectives........... 28 4 Cohomology of groups 32 4.1 Group cohomology.......................... 32 4.6 Bar resolution............................. 33 4.11 Low degree cohomology....................... 34 4.16 Applications to finite groups..................... 36 4.20 Topological interpretation...................... 38 5 Derived Functors and Tor 39 5.1 Abelian categories.......................... 39 5.13 Derived functors........................... 41 5.23 Tor functors.............................. 44 5.28 Homology of a group......................... 45 1 6 Further techniques 47 6.1 Double complexes........................... 47 6.7 Koszul complexes........................... 49 7 Applications to commutative algebra 52 7.1 Global dimensions.......................... 52 7.9 Global dimension of
    [Show full text]
  • Homotopy Equivalences and Free Modules Steven
    Topology, Vol. 21, No. 1, pp. 91-99, 1982 0040-93831821010091-09502.00/0 Printed in Great Britain. Pergamon Press Ltd. HOMOTOPY EQUIVALENCES AND FREE MODULES STEVEN PLOTNICKt:~ (Received 15 December 1980) INTRODUCTION IN THIS PAPER, we are concerned with the problem of determining the group of self-homotopy equivalences of some familiar spaces. We have in mind the following spaces: Let ~- be a finite group acting freely and cellulary on a CW-complex with the homotopy type of S 2m+1. Removing a point from S2m+1/Tr yields a 2m-complex X. We will (theoretically) describe the self-homotopy equivalences of X. (I use the word theoretically since the results is given in terms of units in the integral group ring Z Tr and certain projective modules over ZTr, and these are far from being completely understood.) Once this has been done, it will be fairly straightforward to describe the self-homotopy equivalences of $2~+1/7r and of the 2m-complex which results from removing more than one point from s2m+l/Tr (i.e. X v v $2~). As one might expect, the more points one removes, the easier it is to realize automorphisms of ~r by homotopy equivalences. It seems quite nice that this can be phrased as a question in Ko(Z~). The results can be summarised as follows. First, some standard facts, definitions, and notation: If ~r has order n and acts freely on S :m+~, then H:m+1(~r; Z)m Zn. Thus, a E Aut ~r acts on H2m+l(~r) via multiplication by an integer r~, where (r~, n) = 1.
    [Show full text]
  • Projective Dimensions and Almost Split Sequences
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Algebra 271 (2004) 652–672 www.elsevier.com/locate/jalgebra Projective dimensions and almost split sequences Dag Madsen 1 Department of Mathematical Sciences, NTNU, NO-7491 Trondheim, Norway Received 11 September 2002 Communicated by Kent R. Fuller Abstract Let Λ be an Artin algebra and let 0 → A → B → C → 0 be an almost split sequence. In this paper we discuss under which conditions the inequality pd B max{pd A,pd C} is strict. 2004 Elsevier Inc. All rights reserved. Keywords: Almost split sequences; Homological dimensions Let R be a ring. If we have an exact sequence ε :0→ A → B → C → 0ofR-modules, then pd B max{pdA,pd C}. In some cases, for instance if the sequence is split exact, equality holds, but in general the inequality may be strict. In this paper we will discuss a problem first considered by Auslander (see [5]): Let Λ be an Artin algebra (for example a finite dimensional algebra over a field) and let ε :0→ A → B → C → 0 be an almost split sequence. To which extent does the equality pdB = max{pdA,pd C} hold? Given an exact sequence 0 → A → B → C → 0, we investigate in Section 1 what can be said in complete generality about when pd B<max{pdA,pd C}.Inthissectionwedo not make any assumptions on the rings or the exact sequences involved. In all sections except Section 1 the rings we consider are Artin algebras.
    [Show full text]
  • E Modules for Abelian Hopf Algebras 1974: [Papers]/ IMPRINT Mexico, D.F
    llr ~ 1?J STATUS TYPE OCLC# Submitted 02/26/2019 Copy 28784366 IIIIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIII IIII SOURCE REQUEST DATE NEED BEFORE 193985894 ILLiad 02/26/2019 03/28/2019 BORROWER RECEIVE DATE DUE DATE RRR LENDERS 'ZAP, CUY, CGU BIBLIOGRAPHIC INFORMATION LOCAL ID AUTHOR ARTICLE AUTHOR Ravenel, Douglas TITLE Conference on Homotopy Theory: Evanston, Ill., ARTICLE TITLE Dieudonne modules for abelian Hopf algebras 1974: [papers]/ IMPRINT Mexico, D.F. : Sociedad Matematica Mexicana, FORMAT Book 1975. EDITION ISBN VOLUME NUMBER DATE 1975 SERIES NOTE Notas de matematica y simposia ; nr. 1. PAGES 177-183 INTERLIBRARY LOAN INFORMATION ALERT AFFILIATION ARL; RRLC; CRL; NYLINK; IDS; EAST COPYRIGHT US:CCG VERIFIED <TN:1067325><0DYSSEY:216.54.119.128/RRR> MAX COST OCLC IFM - 100.00 USD SHIPPED DATE LEND CHARGES FAX NUMBER LEND RESTRICTIONS EMAIL BORROWER NOTES We loan for free. Members of East, RRLC, and IDS. ODYSSEY 216.54.119.128/RRR ARIEL FTP ARIEL EMAIL BILL TO ILL UNIVERSITY OF ROCHESTER LIBRARY 755 LIBRARY RD, BOX 270055 ROCHESTER, NY, US 14627-0055 SHIPPING INFORMATION SHIPVIA LM RETURN VIA SHIP TO ILL RETURN TO UNIVERSITY OF ROCHESTER LIBRARY 755 LIBRARY RD, BOX 270055 ROCHESTER, NY, US 14627-0055 ? ,I _.- l lf;j( T ,J / I/) r;·l'J L, I \" (.' ."i' •.. .. NOTAS DE MATEMATICAS Y SIMPOSIA NUMERO 1 COMITE EDITORIAL CONFERENCE ON HOMOTOPY THEORY IGNACIO CANALS N. SAMUEL GITLER H. FRANCISCO GONZALU ACUNA LUIS G. GOROSTIZA Evanston, Illinois, 1974 Con este volwnen, la Sociedad Matematica Mexicana inicia su nueva aerie NOTAS DE MATEMATICAS Y SIMPOSIA Editado por Donald M.
    [Show full text]
  • Homological Algebra Over the Representation Green Functor
    Homological Algebra over the Representation Green Functor SPUR Final Paper, Summer 2012 Yajit Jain Mentor: John Ullman Project suggested by: Mark Behrens February 1, 2013 Abstract In this paper we compute Ext RpF; F q for modules over the representation Green functor R with F given to be the fixed point functor. These functors are Mackey functors, defined in terms of a specific group with coefficients in a commutative ring. Previous work by J. Ventura [1] computes these derived k functors for cyclic groups of order 2 with coefficients in F2. We give computations for general cyclic groups with coefficients in a general field of finite characteristic as well as the symmetric group on three elements with coefficients in F2. 1 1 Introduction Mackey functors are algebraic objects that arise in group representation theory and in equivariant stable homotopy theory, where they arise as stable homotopy groups of equivariant spectra. However, they can be given a purely algebraic definition (see [2]), and there are many interesting problems related to them. In this paper we compute derived functors Ext of the internal homomorphism functor defined on the category of modules over the representation Green functor R. These Mackey functors arise in Künneth spectral sequences for equivariant K-theory (see [1]). We begin by giving definitions of the Burnside category and of Mackey functors. These objects depend on a specific finite group G. It is possible to define a tensor product of Mackey functors, allowing us to identify ’rings’ in the category of Mackey functors, otherwise known as Green functors. We can then define modules over Green functors.
    [Show full text]
  • Max-Planck-Institut Für Mathematik Bonn
    Max-Planck-Institut für Mathematik Bonn Categorifying fractional Euler characteristics, Jones-Wenzl projector and 3 j-symbols by Igor Frenkel Catharina Stroppel Joshua Sussan Max-Planck-Institut für Mathematik Preprint Series 2011 (30) Categorifying fractional Euler characteristics, Jones-Wenzl projector and 3 j-symbols Igor Frenkel Catharina Stroppel Joshua Sussan Max-Planck-Institut für Mathematik Department of Mathematics Vivatsgasse 7 Yale University 53111 Bonn New Haven Germany USA Department of Mathematics University of Bonn Endenicher Allee 60 53115 Bonn Germany MPIM 11-30 CATEGORIFYING FRACTIONAL EULER CHARACTERISTICS, JONES-WENZL PROJECTOR AND 3j-SYMBOLS IGOR FRENKEL, CATHARINA STROPPEL, AND JOSHUA SUSSAN Abstract. We study the representation theory of the smallest quan- tum group and its categorification. The first part of the paper contains an easy visualization of the 3j-symbols in terms of weighted signed line arrangements in a fixed triangle and new binomial expressions for the 3j-symbols. All these formulas are realized as graded Euler characteris- tics. The 3j-symbols appear as new generalizations of Kazhdan-Lusztig polynomials. A crucial result of the paper is that complete intersection rings can be employed to obtain rational Euler characteristics, hence to categorify ra- tional quantum numbers. This is the main tool for our categorification of the Jones-Wenzl projector, Θ-networks and tetrahedron networks. Net- works and their evaluations play an important role in the Turaev-Viro construction of 3-manifold invariants. We categorify these evaluations by Ext-algebras of certain simple Harish-Chandra bimodules. The rel- evance of this construction to categorified colored Jones invariants and invariants of 3-manifolds will be studied in detail in subsequent papers.
    [Show full text]
  • Homological Algebra in Characteristic One Arxiv:1703.02325V1
    Homological algebra in characteristic one Alain Connes, Caterina Consani∗ Abstract This article develops several main results for a general theory of homological algebra in categories such as the category of sheaves of idempotent modules over a topos. In the analogy with the development of homological algebra for abelian categories the present paper should be viewed as the analogue of the development of homological algebra for abelian groups. Our selected prototype, the category Bmod of modules over the Boolean semifield B := f0, 1g is the replacement for the category of abelian groups. We show that the semi-additive category Bmod fulfills analogues of the axioms AB1 and AB2 for abelian categories. By introducing a precise comonad on Bmod we obtain the conceptually related Kleisli and Eilenberg-Moore categories. The latter category Bmods is simply Bmod in the topos of sets endowed with an involution and as such it shares with Bmod most of its abstract categorical properties. The three main results of the paper are the following. First, when endowed with the natural ideal of null morphisms, the category Bmods is a semi-exact, homological category in the sense of M. Grandis. Second, there is a far reaching analogy between Bmods and the category of operators in Hilbert space, and in particular results relating null kernel and injectivity for morphisms. The third fundamental result is that, even for finite objects of Bmods the resulting homological algebra is non-trivial and gives rise to a computable Ext functor. We determine explicitly this functor in the case provided by the diagonal morphism of the Boolean semiring into its square.
    [Show full text]
  • Math 711: Lecture of September 24, 2007 Flat Base Change and Hom
    Math 711: Lecture of September 24, 2007 Flat base change and Hom We want to discuss in some detail when a short exact sequence splits. The following result is very useful. Theorem (Hom commutes with flat base change). If S is a flat R-algebra and M, N are R-modules such that M is finitely presented over R, then the canonical homomorphism θM : S ⊗R HomR(M, N) → HomS(S ⊗R M, S ⊗R N) sending s ⊗ f to s(1S ⊗ f) is an isomorphism. | Proof. It is easy to see that θR is an isomorphism and that θM1⊕M2 may be identified with θM1 ⊕ θM2 , so that θG is an isomorphism whenever G is a finitely generated free R-module. Since M is finitely presented, we have an exact sequence H → G M → 0 where G, H are finitely generated free R-modules. In the diagram below the right column is obtained by first applying S ⊗R (exactness is preserved since ⊗ is right exact), and then applying HomS( ,S ⊗R N), so that the right column is exact. The left column is obtained by first applying HomR( ,N), and then S ⊗R (exactness is preserved because of the hypothesis that S is R-flat). The squares are easily seen to commute. θH S ⊗R HomR(H, N) −−−−→ HomS(S ⊗R H, S ⊗R N) x x θG S ⊗R HomR(G, N) −−−−→ HomS(S ⊗R G, S ⊗R N) x x θM S ⊗R HomR(M, N) −−−−→ HomS(S ⊗R M, S ⊗R N) x x 0 −−−−→ 0 From the fact, established in the first paragraph, that θG and θH are isomorphisms and the exactness of the two columns, it follows that θM is an isomorphism as well (kernels of isomorphic maps are isomorphic).
    [Show full text]
  • Cohomology of Split Group Extensions
    JOURNAL OF ALGEBRA 29, 255-302 (1974) Cohomology of Split Group Extensions CHIH-HAN SAH* State University of New York at Stony Brook, New York, 11790 Communicated by Walter Fed Received December 15, 1972 In a fundamental paper [ 121, Hochschild and Serre studied the cohomology of a group extension: l+K+G+G/K+l. They introduced a spectral sequence relating the cohomology of G (with a suitable filtration) to the cohomologies of G/K and K. In later developments, Charlap and Vasquez [5, 61 showed that, under suitable restrictions, d, of the Hochschild-Serre spectral sequence can be described as the cup product with certain “characteristic” cohomology classes. In the special case where K is a free abelian group L of finite rank N and when G splits over K by r = G/K, these characteristic classes v 2t lie in H2(r, fP1(L, H,(L, Z))). Through straightforward, though formidable, procedures, Charlap and Vasquez found a number of interesting results concerning these characteristic classes. However, these characteristic classes still appeared mysterious and difficult to handle. The purpose of the present paper is to present a procedure to determine the most important one of these characteristic classes. To be precise, Charlap and Vasquez showed that vZt E H2(F, fPl(L, H,(L, Z))) have orders dividing 2; vsl = 0 and vpt = 0 holds for all t if and only if v22 = 0. They also showed that vZt are functorial in r so that vZt are universal when .F = GL(N, Z). We show that H2(GL(N, Z), HI(L, H,(L, Z))) is a group of order 2 for N > 2, and when N > 2, its generator is the universal characteristic class.
    [Show full text]
  • Grothendieck Groups of Quotient Singularities
    transactions of the american mathematical society Volume 332, Number 1, July 1992 GROTHENDIECKGROUPS OF QUOTIENT SINGULARITIES EDUARDO DO NASCIMENTO MARCOS Abstract. Given a quotient singularity R = Sa where S = C[[xi, ... , x„]] is the formal power series ring in «-variables over the complex numbers C, there is an epimorphism of Grothendieck groups y/ : Go(S[G]) —» Gq(R) , where S[G] is the skew group ring and y/ is induced by the fixed point functor. The Grothendieck group of S[G] carries a natural structure of a ring, iso- morphic to G0(C[<7]). We show how the structure of Go(R) is related to the structure of the ram- ification locus of V over V¡G , and the action of G on it. The first connection is given by showing that Ker y/ is the ideal generated by [C] if and only if G acts freely on V . That this is sufficient has been proved by Auslander and Reiten in [4]. To prove the necessity we show the following: Let U be an integrally closed domain and T the integral closure of U in a finite Galois extension of the field of quotients of U with Galois group G . Suppose that \G\ is invertible in U , the inclusion of U in T is unramified at height one prime ideals and T is regular. Then Gq(T[G]) = Z if and only if U is regular. We analyze the situation V =VX \Xq\g\ v2 where G acts freely on V\, V¡ ^ 0. We prove that for a quotient singularity R, Go(R) = Go(R[[t]]).
    [Show full text]
  • An Introduction to Homological Algebra
    An Introduction to Homological Algebra Aaron Marcus September 21, 2007 1 Introduction While it began as a tool in algebraic topology, the last fifty years have seen homological algebra grow into an indispensable tool for algebraists, topologists, and geometers. 2 Preliminaries Before we can truly begin, we must first introduce some basic concepts. Throughout, R will denote a commutative ring (though very little actually depends on commutativity). For the sake of discussion, one may assume either that R is a field (in which case we will have chain complexes of vector spaces) or that R = Z (in which case we will have chain complexes of abelian groups). 2.1 Chain Complexes Definition 2.1. A chain complex is a collection of {Ci}i∈Z of R-modules and maps {di : Ci → Ci−1} i called differentials such that di−1 ◦ di = 0. Similarly, a cochain complex is a collection of {C }i∈Z of R-modules and maps {di : Ci → Ci+1} such that di+1 ◦ di = 0. di+1 di ... / Ci+1 / Ci / Ci−1 / ... Remark 2.2. The only difference between a chain complex and a cochain complex is whether the maps go up in degree (are of degree 1) or go down in degree (are of degree −1). Every chain complex is canonically i i a cochain complex by setting C = C−i and d = d−i. Remark 2.3. While we have assumed complexes to be infinite in both directions, if a complex begins or ends with an infinite number of zeros, we can suppress these zeros and discuss finite or bounded complexes.
    [Show full text]
  • A Primer on Homological Algebra
    A Primer on Homological Algebra Henry Y. Chan July 12, 2013 1 Modules For people who have taken the algebra sequence, you can pretty much skip the first section... Before telling you what a module is, you probably should know what a ring is... Definition 1.1. A ring is a set R with two operations + and ∗ and two identities 0 and 1 such that 1. (R; +; 0) is an abelian group. 2. (Associativity) (x ∗ y) ∗ z = x ∗ (y ∗ z), for all x; y; z 2 R. 3. (Multiplicative Identity) x ∗ 1 = 1 ∗ x = x, for all x 2 R. 4. (Left Distributivity) x ∗ (y + z) = x ∗ y + x ∗ z, for all x; y; z 2 R. 5. (Right Distributivity) (x + y) ∗ z = x ∗ z + y ∗ z, for all x; y; z 2 R. A ring is commutative if ∗ is commutative. Note that multiplicative inverses do not have to exist! Example 1.2. 1. Z; Q; R; C with the standard addition, the standard multiplication, 0, and 1. 2. Z=nZ with addition and multiplication modulo n, 0, and 1. 3. R [x], the set of all polynomials with coefficients in R, where R is a ring, with the standard polynomial addition and multiplication. 4. Mn×n, the set of all n-by-n matrices, with matrix addition and multiplication, 0n, and In. For convenience, from now on we only consider commutative rings. Definition 1.3. Assume (R; +R; ∗R; 0R; 1R) is a commutative ring. A R-module is an abelian group (M; +M ; 0M ) with an operation · : R × M ! M such that 1 1.
    [Show full text]