The Pythagorean Theorem: What Is It About?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Canada Archives Canada Published Heritage Direction Du Branch Patrimoine De I'edition
Rhetoric more geometrico in Proclus' Elements of Theology and Boethius' De Hebdomadibus A Thesis submitted in Candidacy for the Degree of Master of Arts in Philosophy Institute for Christian Studies Toronto, Ontario By Carlos R. Bovell November 2007 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-43117-7 Our file Notre reference ISBN: 978-0-494-43117-7 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. -
Can One Design a Geometry Engine? on the (Un) Decidability of Affine
Noname manuscript No. (will be inserted by the editor) Can one design a geometry engine? On the (un)decidability of certain affine Euclidean geometries Johann A. Makowsky Received: June 4, 2018/ Accepted: date Abstract We survey the status of decidabilty of the consequence relation in various ax- iomatizations of Euclidean geometry. We draw attention to a widely overlooked result by Martin Ziegler from 1980, which proves Tarski’s conjecture on the undecidability of finitely axiomatizable theories of fields. We elaborate on how to use Ziegler’s theorem to show that the consequence relations for the first order theory of the Hilbert plane and the Euclidean plane are undecidable. As new results we add: (A) The first order consequence relations for Wu’s orthogonal and metric geometries (Wen- Ts¨un Wu, 1984), and for the axiomatization of Origami geometry (J. Justin 1986, H. Huzita 1991) are undecidable. It was already known that the universal theory of Hilbert planes and Wu’s orthogonal geom- etry is decidable. We show here using elementary model theoretic tools that (B) the universal first order consequences of any geometric theory T of Pappian planes which is consistent with the analytic geometry of the reals is decidable. The techniques used were all known to experts in mathematical logic and geometry in the past but no detailed proofs are easily accessible for practitioners of symbolic computation or automated theorem proving. Keywords Euclidean Geometry · Automated Theorem Proving · Undecidability arXiv:1712.07474v3 [cs.SC] 1 Jun 2018 J.A. Makowsky Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel E-mail: [email protected] 2 J.A. -
Geometry Course Outline
GEOMETRY COURSE OUTLINE Content Area Formative Assessment # of Lessons Days G0 INTRO AND CONSTRUCTION 12 G-CO Congruence 12, 13 G1 BASIC DEFINITIONS AND RIGID MOTION Representing and 20 G-CO Congruence 1, 2, 3, 4, 5, 6, 7, 8 Combining Transformations Analyzing Congruency Proofs G2 GEOMETRIC RELATIONSHIPS AND PROPERTIES Evaluating Statements 15 G-CO Congruence 9, 10, 11 About Length and Area G-C Circles 3 Inscribing and Circumscribing Right Triangles G3 SIMILARITY Geometry Problems: 20 G-SRT Similarity, Right Triangles, and Trigonometry 1, 2, 3, Circles and Triangles 4, 5 Proofs of the Pythagorean Theorem M1 GEOMETRIC MODELING 1 Solving Geometry 7 G-MG Modeling with Geometry 1, 2, 3 Problems: Floodlights G4 COORDINATE GEOMETRY Finding Equations of 15 G-GPE Expressing Geometric Properties with Equations 4, 5, Parallel and 6, 7 Perpendicular Lines G5 CIRCLES AND CONICS Equations of Circles 1 15 G-C Circles 1, 2, 5 Equations of Circles 2 G-GPE Expressing Geometric Properties with Equations 1, 2 Sectors of Circles G6 GEOMETRIC MEASUREMENTS AND DIMENSIONS Evaluating Statements 15 G-GMD 1, 3, 4 About Enlargements (2D & 3D) 2D Representations of 3D Objects G7 TRIONOMETRIC RATIOS Calculating Volumes of 15 G-SRT Similarity, Right Triangles, and Trigonometry 6, 7, 8 Compound Objects M2 GEOMETRIC MODELING 2 Modeling: Rolling Cups 10 G-MG Modeling with Geometry 1, 2, 3 TOTAL: 144 HIGH SCHOOL OVERVIEW Algebra 1 Geometry Algebra 2 A0 Introduction G0 Introduction and A0 Introduction Construction A1 Modeling With Functions G1 Basic Definitions and Rigid -
Right Triangles and the Pythagorean Theorem Related?
Activity Assess 9-6 EXPLORE & REASON Right Triangles and Consider △ ABC with altitude CD‾ as shown. the Pythagorean B Theorem D PearsonRealize.com A 45 C 5√2 I CAN… prove the Pythagorean Theorem using A. What is the area of △ ABC? Of △ACD? Explain your answers. similarity and establish the relationships in special right B. Find the lengths of AD‾ and AB‾ . triangles. C. Look for Relationships Divide the length of the hypotenuse of △ ABC VOCABULARY by the length of one of its sides. Divide the length of the hypotenuse of △ACD by the length of one of its sides. Make a conjecture that explains • Pythagorean triple the results. ESSENTIAL QUESTION How are similarity in right triangles and the Pythagorean Theorem related? Remember that the Pythagorean Theorem and its converse describe how the side lengths of right triangles are related. THEOREM 9-8 Pythagorean Theorem If a triangle is a right triangle, If... △ABC is a right triangle. then the sum of the squares of the B lengths of the legs is equal to the square of the length of the hypotenuse. c a A C b 2 2 2 PROOF: SEE EXAMPLE 1. Then... a + b = c THEOREM 9-9 Converse of the Pythagorean Theorem 2 2 2 If the sum of the squares of the If... a + b = c lengths of two sides of a triangle is B equal to the square of the length of the third side, then the triangle is a right triangle. c a A C b PROOF: SEE EXERCISE 17. Then... △ABC is a right triangle. -
Pythagorean Theorem Word Problems Ws #1 Name ______
Pythagorean Theorem word problems ws #1 Name __________________________ Solve each of the following. Please draw a picture and use the Pythagorean Theorem to solve. Be sure to label all answers and leave answers in exact simplified form. 1. The bottom of a ladder must be placed 3 feet from a wall. The ladder is 12 feet long. How far above the ground does the ladder touch the wall? 2. A soccer field is a rectangle 90 meters wide and 120 meters long. The coach asks players to run from one corner to the corner diagonally across the field. How far do the players run? 3. How far from the base of the house do you need to place a 15’ ladder so that it exactly reaches the top of a 12’ wall? 4. What is the length of the diagonal of a 10 cm by 15 cm rectangle? 5. The diagonal of a rectangle is 25 in. The width is 15 in. What is the area of the rectangle? 6. Two sides of a right triangle are 8” and 12”. A. Find the the area of the triangle if 8 and 12 are legs. B. Find the area of the triangle if 8 and 12 are a leg and hypotenuse. 7. The area of a square is 81 cm2. Find the perimeter of the square. 8. An isosceles triangle has congruent sides of 20 cm. The base is 10 cm. What is the area of the triangle? 9. A baseball diamond is a square that is 90’ on each side. -
5-7 the Pythagorean Theorem 5-7 the Pythagorean Theorem
55-7-7 TheThe Pythagorean Pythagorean Theorem Theorem Warm Up Lesson Presentation Lesson Quiz HoltHolt McDougal Geometry Geometry 5-7 The Pythagorean Theorem Warm Up Classify each triangle by its angle measures. 1. 2. acute right 3. Simplify 12 4. If a = 6, b = 7, and c = 12, find a2 + b2 2 and find c . Which value is greater? 2 85; 144; c Holt McDougal Geometry 5-7 The Pythagorean Theorem Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles. Holt McDougal Geometry 5-7 The Pythagorean Theorem Vocabulary Pythagorean triple Holt McDougal Geometry 5-7 The Pythagorean Theorem The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse. a2 + b2 = c2 Holt McDougal Geometry 5-7 The Pythagorean Theorem Example 1A: Using the Pythagorean Theorem Find the value of x. Give your answer in simplest radical form. a2 + b2 = c2 Pythagorean Theorem 22 + 62 = x2 Substitute 2 for a, 6 for b, and x for c. 40 = x2 Simplify. Find the positive square root. Simplify the radical. Holt McDougal Geometry 5-7 The Pythagorean Theorem Example 1B: Using the Pythagorean Theorem Find the value of x. Give your answer in simplest radical form. a2 + b2 = c2 Pythagorean Theorem (x – 2)2 + 42 = x2 Substitute x – 2 for a, 4 for b, and x for c. x2 – 4x + 4 + 16 = x2 Multiply. -
3 Analytic Geometry
3 Analytic Geometry 3.1 The Cartesian Co-ordinate System Pure Euclidean geometry in the style of Euclid and Hilbert is what we call synthetic: axiomatic, with- out co-ordinates or explicit formulæ for length, area, volume, etc. Nowadays, the practice of ele- mentary geometry is almost entirely analytic: reliant on algebra, co-ordinates, vectors, etc. The major breakthrough came courtesy of Rene´ Descartes (1596–1650) and Pierre de Fermat (1601/16071–1655), whose introduction of an axis, a fixed reference ruler against which objects could be measured using co-ordinates, allowed them to apply the Islamic invention of algebra to geometry, resulting in more efficient computations. The new geometry was revolutionary, so much so that Descartes felt the need to justify his argu- ments using synthetic geometry, lest no-one believe his work! This attitude persisted for some time: when Issac Newton published his groundbreaking Principia in 1687, his presentation was largely syn- thetic, even though he had used co-ordinates in his derivations. Synthetic geometry is not without its benefits—many results are much cleaner, and analytic geometry presents its own logical difficulties— but, as time has passed, its study has become something of a fringe activity: co-ordinates are simply too useful to ignore! Given that Cartesian geometry is the primary form we learn in grade-school, we merely sketch the familiar ideas of co-ordinates and vectors. • Assume everything necessary about on the real line. continuity y 3 • Perpendicular axes meet at the origin. P 2 • The Cartesian co-ordinates of a point P are measured by project- ing onto the axes: in the picture, P has co-ordinates (1, 2), often 1 written simply as P = (1, 2). -
The Pythagorean Theorem and Area: Postulates Into Theorems Paul A
Humanistic Mathematics Network Journal Issue 25 Article 13 8-1-2001 The Pythagorean Theorem and Area: Postulates into Theorems Paul A. Kennedy Texas State University Kenneth Evans Texas State University Follow this and additional works at: http://scholarship.claremont.edu/hmnj Part of the Mathematics Commons, Science and Mathematics Education Commons, and the Secondary Education and Teaching Commons Recommended Citation Kennedy, Paul A. and Evans, Kenneth (2001) "The Pythagorean Theorem and Area: Postulates into Theorems," Humanistic Mathematics Network Journal: Iss. 25, Article 13. Available at: http://scholarship.claremont.edu/hmnj/vol1/iss25/13 This Article is brought to you for free and open access by the Journals at Claremont at Scholarship @ Claremont. It has been accepted for inclusion in Humanistic Mathematics Network Journal by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. The Pythagorean Theorem and Area: Postulates into Theorems Paul A. Kennedy Contributing Author: Department of Mathematics Kenneth Evans Southwest Texas State University Department of Mathematics, Retired San Marcos, TX 78666-4616 Southwest Texas State University [email protected] San Marcos, TX 78666-4616 Considerable time is spent in high school geometry equal to the area of the square on the hypotenuse. building an axiomatic system that allows students to understand and prove interesting theorems. In tradi- tional geometry classrooms, the theorems were treated in isolation with some of -
The Pythagorean Theorem
6.2 The Pythagorean Theorem How are the lengths of the sides of a right STATES triangle related? STANDARDS MA.8.G.2.4 MA.8.A.6.4 Pythagoras was a Greek mathematician and philosopher who discovered one of the most famous rules in mathematics. In mathematics, a rule is called a theorem. So, the rule that Pythagoras discovered is called the Pythagorean Theorem. Pythagoras (c. 570 B.C.–c. 490 B.C.) 1 ACTIVITY: Discovering the Pythagorean Theorem Work with a partner. a. On grid paper, draw any right triangle. Label the lengths of the two shorter sides (the legs) a and b. c2 c a a2 b. Label the length of the longest side (the hypotenuse) c. b b2 c . Draw squares along each of the three sides. Label the areas of the three squares a 2, b 2, and c 2. d. Cut out the three squares. Make eight copies of the right triangle and cut them out. a2 Arrange the fi gures to form 2 two identical larger squares. c b2 e. What does this tell you about the relationship among a 2, b 2, and c 2? 236 Chapter 6 Square Roots and the Pythagorean Theorem 2 ACTIVITY: Finding the Length of the Hypotenuse Work with a partner. Use the result of Activity 1 to fi nd the length of the hypotenuse of each right triangle. a. b. c 10 c 3 24 4 c. d. c 0.6 2 c 3 0.8 1 2 3 ACTIVITY: Finding the Length of a Leg Work with a partner. -
Synthetic and Analytic Geometry
CHAPTER I SYNTHETIC AND ANALYTIC GEOMETRY The purpose of this chapter is to review some basic facts from classical deductive geometry and coordinate geometry from slightly more advanced viewpoints. The latter reflect the approaches taken in subsequent chapters of these notes. 1. Axioms for Euclidean geometry During the 19th century, mathematicians recognized that the logical foundations of their subject had to be re-examined and strengthened. In particular, it was very apparent that the axiomatic setting for geometry in Euclid's Elements requires nontrivial modifications. Several ways of doing this were worked out by the end of the century, and in 1900 D. Hilbert1 (1862{1943) gave a definitive account of the modern foundations in his highly influential book, Foundations of Geometry. Mathematical theories begin with primitive concepts, which are not formally defined, and as- sumptions or axioms which describe the basic relations among the concepts. In Hilbert's setting there are six primitive concepts: Points, lines, the notion of one point lying between two others (betweenness), congruence of segments (same distances between the endpoints) and congruence of angles (same angular measurement in degrees or radians). The axioms on these undefined concepts are divided into five classes: Incidence, order, congruence, parallelism and continuity. One notable feature of this classification is that only one class (congruence) requires the use of all six primitive concepts. More precisely, the concepts needed for the axiom classes are given as follows: Axiom class Concepts required Incidence Point, line, plane Order Point, line, plane, betweenness Congruence All six Parallelism Point, line, plane Continuity Point, line, plane, betweenness Strictly speaking, Hilbert's treatment of continuity involves congruence of segments, but the continuity axiom may be formulated without this concept (see Forder, Foundations of Euclidean Geometry, p. -
The Euclidean Mousetrap
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilPapers Originally in Journal of Idealistic Studies 38(3): 209-220 (2008). Please quote from published version. THE EUCLIDEAN MOUSETRAP: SCHOPENHAUER’S CRITICISM OF THE SYNTHETIC METHOD IN GEOMETRY Jason M. Costanzo Abstract In his doctoral dissertation On the Principle of Sufficient Reason, Arthur Schopenhauer there outlines a critique of Euclidean geometry on the basis of the changing nature of mathematics, and hence of demonstration, as a result of Kantian idealism. According to Schopenhauer, Euclid treats geometry synthetically, proceeding from the simple to the complex, from the known to the unknown, “synthesizing” later proofs on the basis of earlier ones. Such a method, although proving the case logically, nevertheless fails to attain the raison d’être of the entity. In order to obtain this, a separate method is required, which Schopenhauer refers to as “analysis”, thus echoing a method already in practice among the early Greek geometers, with however some significant differences. In this essay, I here discuss Schopenhauer’s criticism of synthesis in Euclid’s Elements, and the nature and relevance of his own method of analysis. The influence of philosophy upon the development of mathematics is readily seen in the practice among mathematicians of offering a demonstration or “proof” of the many theorems and problems which they encounter. This practice finds its origin among the early Greek geometricians and arithmeticians, during a time in which philosophy and mathematics intermingled at an unprecedented level, and a period in which rationalism enjoyed preeminence. -
Is Geometry Analytic? Mghanga David Mwakima
IS GEOMETRY ANALYTIC? MGHANGA DAVID MWAKIMA 1. INTRODUCTION In the fourth chapter of Language, Truth and Logic, Ayer undertakes the task of showing how a priori knowledge of mathematics and logic is possible. In doing so, he argues that only if we understand mathematics and logic as analytic,1 by which he memorably meant “devoid of factual content”2, do we have a justified account of 3 a priori knowledgeδιανοια of these disciplines. In this chapter, it is not clear whether Ayer gives an argument per se for the analyticity of mathematics and logic. For when one reads that chapter, one sees that Ayer is mainly criticizing the views held by Kant and Mill with respect to arithmetic.4 Nevertheless, I believe that the positive argument is present. Ayer’s discussion of geometry5 in this chapter shows that it is this discussion which constitutes his positive argument for the thesis that analytic sentences are true 1 Now, I am aware that ‘analytic’ was understood differently by Kant, Carnap, Ayer, Quine, and Putnam. It is not even clear whether there is even an agreed definition of ‘analytic’ today. For the purposes of my paper, the meaning of ‘analytic’ is Carnap’s sense as described in: Michael, Friedman, Reconsidering Logical Positivism (New York: Cambridge University Press, 1999), in terms of the relativized a priori. 2 Alfred Jules, Ayer, Language, Truth and Logic (New York: Dover Publications, 1952), p. 79, 87. In these sections of the book, I think the reason Ayer chose to characterize analytic statements as “devoid of factual” content is in order to give an account of why analytic statements could not be shown to be false on the basis of observation.