A Novel Secure Hash Algorithm for Public Key Digital Signature Schemes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hello, and Welcome to This Presentation of the STM32MP1 Hash Processor
Hello, and welcome to this presentation of the STM32MP1 hash processor. 1 Hash peripheral is in charge of efficient computing of message digest. A digest is a fixed-length value computed from an input message. A digest is unique - it is virtually impossible to find two messages with the same digest. The original message cannot be retrieved from its digest. Hash digests and Hash-based Message Authentication Code (HMAC) are widely used in communication since they are used to guarantee the integrity and authentication of a transfer. 2 HASH1 is a secure peripheral (under ETZPC control through ETZPC_DECPROT0 bit 8) while HASH2 is a non secure peripheral. HASH1 instance can be allocated to: • The Arm® Cortex®-A7 secure core to be controlled in OP-TEE by the HASH OP-TEE driver or • The Arm® Cortex® -A7 non-secure core for using in Linux® with Linux Crypto framework HASH2 instance can be allocated to the Arm® Cortex®-M4 core to be controlled in the STM32Cube MPU Package using the STM32Cube HASH driver. HASH1 instance is used as boot device to support binary authentication. 3 The hash processor supports widely used hash functions including Message Digest 5 (MD5), Secure Hash Algorithm SHA-1 and the more recent SHA-2 with its 224- and 256-bit digest length versions. A hash can also be generated with a secrete-key to produce a message authentication code (MAC). The processor supports bit, byte and half-word swapping. It supports also automatic padding of input data for block alignment. The processor can be used in conjunction with the DMA for automatic processor feeding. -
Downloaded on 2017-02-12T13:16:07Z HARDWARE DESIGNOF CRYPTOGRAPHIC ACCELERATORS
Title Hardware design of cryptographic accelerators Author(s) Baldwin, Brian John Publication date 2013 Original citation Baldwin, B.J., 2013. Hardware design of cryptographic accelerators. PhD Thesis, University College Cork. Type of publication Doctoral thesis Rights © 2013. Brian J. Baldwin http://creativecommons.org/licenses/by-nc-nd/3.0/ Embargo information No embargo required Item downloaded http://hdl.handle.net/10468/1112 from Downloaded on 2017-02-12T13:16:07Z HARDWARE DESIGN OF CRYPTOGRAPHIC ACCELERATORS by BRIAN BALDWIN Thesis submitted for the degree of PHD from the Department of Electrical Engineering National University of Ireland University College, Cork, Ireland May 7, 2013 Supervisor: Dr. William P. Marnane “What I cannot create, I do not understand” - Richard Feynman; on his blackboard at time of death in 1988. Contents 1 Introduction 1 1.1 Motivation...................................... 1 1.2 ThesisAims..................................... 3 1.3 ThesisOutline................................... 6 2 Background 9 2.1 Introduction.................................... 9 2.2 IntroductiontoCryptography. ...... 10 2.3 MathematicalBackground . ... 13 2.3.1 Groups ................................... 13 2.3.2 Rings .................................... 14 2.3.3 Fields.................................... 15 2.3.4 FiniteFields ................................ 16 2.4 EllipticCurves .................................. 17 2.4.1 TheGroupLaw............................... 18 2.4.2 EllipticCurvesoverPrimeFields . .... 19 2.5 CryptographicPrimitives&Protocols -
Cryptography in Modern World
Cryptography in Modern World Julius O. Olwenyi, Aby Tino Thomas, Ayad Barsoum* St. Mary’s University, San Antonio, TX (USA) Emails: [email protected], [email protected], [email protected] Abstract — Cryptography and Encryption have been where a letter in plaintext is simply shifted 3 places down used for secure communication. In the modern world, the alphabet [4,5]. cryptography is a very important tool for protecting information in computer systems. With the invention ABCDEFGHIJKLMNOPQRSTUVWXYZ of the World Wide Web or Internet, computer systems are highly interconnected and accessible from DEFGHIJKLMNOPQRSTUVWXYZABC any part of the world. As more systems get interconnected, more threat actors try to gain access The ciphertext of the plaintext “CRYPTOGRAPHY” will to critical information stored on the network. It is the be “FUBSWRJUASLB” in a Caesar cipher. responsibility of data owners or organizations to keep More recent derivative of Caesar cipher is Rot13 this data securely and encryption is the main tool used which shifts 13 places down the alphabet instead of 3. to secure information. In this paper, we will focus on Rot13 was not all about data protection but it was used on different techniques and its modern application of online forums where members could share inappropriate cryptography. language or nasty jokes without necessarily being Keywords: Cryptography, Encryption, Decryption, Data offensive as it will take those interested in those “jokes’ security, Hybrid Encryption to shift characters 13 spaces to read the message and if not interested you do not need to go through the hassle of converting the cipher. I. INTRODUCTION In the 16th century, the French cryptographer Back in the days, cryptography was not all about Blaise de Vigenere [4,5], developed the first hiding messages or secret communication, but in ancient polyalphabetic substitution basically based on Caesar Egypt, where it began; it was carved into the walls of cipher, but more difficult to crack the cipher text. -
A Review on Elliptic Curve Cryptography for Embedded Systems
International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 3, June 2011 A REVIEW ON ELLIPTIC CURVE CRYPTOGRAPHY FOR EMBEDDED SYSTEMS Rahat Afreen 1 and S.C. Mehrotra 2 1Tom Patrick Institute of Computer & I.T, Dr. Rafiq Zakaria Campus, Rauza Bagh, Aurangabad. (Maharashtra) INDIA [email protected] 2Department of C.S. & I.T., Dr. B.A.M. University, Aurangabad. (Maharashtra) INDIA [email protected] ABSTRACT Importance of Elliptic Curves in Cryptography was independently proposed by Neal Koblitz and Victor Miller in 1985.Since then, Elliptic curve cryptography or ECC has evolved as a vast field for public key cryptography (PKC) systems. In PKC system, we use separate keys to encode and decode the data. Since one of the keys is distributed publicly in PKC systems, the strength of security depends on large key size. The mathematical problems of prime factorization and discrete logarithm are previously used in PKC systems. ECC has proved to provide same level of security with relatively small key sizes. The research in the field of ECC is mostly focused on its implementation on application specific systems. Such systems have restricted resources like storage, processing speed and domain specific CPU architecture. KEYWORDS Elliptic curve cryptography Public Key Cryptography, embedded systems, Elliptic Curve Digital Signature Algorithm ( ECDSA), Elliptic Curve Diffie Hellman Key Exchange (ECDH) 1. INTRODUCTION The changing global scenario shows an elegant merging of computing and communication in such a way that computers with wired communication are being rapidly replaced to smaller handheld embedded computers using wireless communication in almost every field. This has increased data privacy and security requirements. -
Choosing Key Sizes for Cryptography
information security technical report 15 (2010) 21e27 available at www.sciencedirect.com www.compseconline.com/publications/prodinf.htm Choosing key sizes for cryptography Alexander W. Dent Information Security Group, University Of London, Royal Holloway, UK abstract After making the decision to use public-key cryptography, an organisation still has to make many important decisions before a practical system can be implemented. One of the more difficult challenges is to decide the length of the keys which are to be used within the system: longer keys provide more security but mean that the cryptographic operation will take more time to complete. The most common solution is to take advice from information security standards. This article will investigate the methodology that is used produce these standards and their meaning for an organisation who wishes to implement public-key cryptography. ª 2010 Elsevier Ltd. All rights reserved. 1. Introduction being compromised by an attacker). It also typically means a slower scheme. Most symmetric cryptographic schemes do The power of public-key cryptography is undeniable. It is not allow the use of keys of different lengths. If a designer astounding in its simplicity and its ability to provide solutions wishes to offer a symmetric scheme which provides different to many seemingly insurmountable organisational problems. security levels depending on the key size, then the designer However, the use of public-key cryptography in practice is has to construct distinct variants of a central design which rarely as simple as the concept first appears. First one has to make use of different pre-specified key lengths. -
Cryptographic Control Standard, Version
Nuclear Regulatory Commission Office of the Chief Information Officer Computer Security Standard Office Instruction: OCIO-CS-STD-2009 Office Instruction Title: Cryptographic Control Standard Revision Number: 2.0 Issuance: Date of last signature below Effective Date: October 1, 2017 Primary Contacts: Kathy Lyons-Burke, Senior Level Advisor for Information Security Responsible Organization: OCIO Summary of Changes: OCIO-CS-STD-2009, “Cryptographic Control Standard,” provides the minimum security requirements that must be applied to the Nuclear Regulatory Commission (NRC) systems which utilize cryptographic algorithms, protocols, and cryptographic modules to provide secure communication services. This update is based on the latest versions of the National Institute of Standards and Technology (NIST) Guidance and Federal Information Processing Standards (FIPS) publications, Committee on National Security System (CNSS) issuances, and National Security Agency (NSA) requirements. Training: Upon request ADAMS Accession No.: ML17024A095 Approvals Primary Office Owner Office of the Chief Information Officer Signature Date Enterprise Security Kathy Lyons-Burke 09/26/17 Architecture Working Group Chair CIO David Nelson /RA/ 09/26/17 CISO Jonathan Feibus 09/26/17 OCIO-CS-STD-2009 Page i TABLE OF CONTENTS 1 PURPOSE ............................................................................................................................. 1 2 INTRODUCTION .................................................................................................................. -
Recommendation for Applications Using Approved Hash Algorithms
Archived NIST Technical Series Publication The attached publication has been archived (withdrawn), and is provided solely for historical purposes. It may have been superseded by another publication (indicated below). Archived Publication Series/Number: NIST Special Publication 800-107 Title: Recommendation for Applications Using Approved Hash Algorithms Publication Date(s): February 2009 Withdrawal Date: August 2012 Withdrawal Note: SP 800-107 is superseded in its entirety by the publication of SP 800-107 Revision 1 (August 2012). Superseding Publication(s) The attached publication has been superseded by the following publication(s): Series/Number: NIST Special Publication 800-107 Revision 1 Title: Recommendation for Applications Using Approved Hash Algorithms Author(s): Quynh Dang Publication Date(s): August 2012 URL/DOI: http://dx.doi.org/10.6028/NIST.SP.107r1 Additional Information (if applicable) Contact: Computer Security Division (Information Technology Lab) Latest revision of the SP 800-107 Rev. 1 (as of August 12, 2015) attached publication: Related information: http://csrc.nist.gov/ Withdrawal N/A announcement (link): Date updated: ƵŐƵƐƚϭϮ, 2015 NIST Special Publication 800-107 Recommendation for Applications Using Approved Hash Algorithms Quynh Dang Computer Security Division Information Technology Laboratory C O M P U T E R S E C U R I T Y February 2009 U.S. Department of Commerce Otto J. Wolff, Acting Secretary National Institute of Standards and Technology Patrick D. Gallagher, Deputy Director NIST SP 800-107 Abstract Cryptographic hash functions that compute a fixed- length message digest from arbitrary length messages are widely used for many purposes in information security. This document provides security guidelines for achieving the required or desired security strengths when using cryptographic applications that employ the approved cryptographic hash functions specified in Federal Information Processing Standard (FIPS) 180-3. -
SHA-3 and the Hash Function Keccak
Christof Paar Jan Pelzl SHA-3 and The Hash Function Keccak An extension chapter for “Understanding Cryptography — A Textbook for Students and Practitioners” www.crypto-textbook.com Springer 2 Table of Contents 1 The Hash Function Keccak and the Upcoming SHA-3 Standard . 1 1.1 Brief History of the SHA Family of Hash Functions. .2 1.2 High-level Description of Keccak . .3 1.3 Input Padding and Generating of Output . .6 1.4 The Function Keccak- f (or the Keccak- f Permutation) . .7 1.4.1 Theta (q)Step.......................................9 1.4.2 Steps Rho (r) and Pi (p).............................. 10 1.4.3 Chi (c)Step ........................................ 10 1.4.4 Iota (i)Step......................................... 11 1.5 Implementation in Software and Hardware . 11 1.6 Discussion and Further Reading . 12 1.7 Lessons Learned . 14 Problems . 15 References ......................................................... 17 v Chapter 1 The Hash Function Keccak and the Upcoming SHA-3 Standard This document1 is a stand-alone description of the Keccak hash function which is the basis of the upcoming SHA-3 standard. The description is consistent with the approach used in our book Understanding Cryptography — A Textbook for Students and Practioners [11]. If you own the book, this document can be considered “Chap- ter 11b”. However, the book is most certainly not necessary for using the SHA-3 description in this document. You may want to check the companion web site of Understanding Cryptography for more information on Keccak: www.crypto-textbook.com. In this chapter you will learn: A brief history of the SHA-3 selection process A high-level description of SHA-3 The internal structure of SHA-3 A discussion of the software and hardware implementation of SHA-3 A problem set and recommended further readings 1 We would like to thank the Keccak designers as well as Pawel Swierczynski and Christian Zenger for their extremely helpful input to this document. -
Eurocrypt 2013 Athens, Greece, May 28Th, 2013
Keccak Guido Bertoni1 Joan Daemen1 Michaël Peeters2 Gilles Van Assche1 1STMicroelectronics 2NXP Semiconductors Eurocrypt 2013 Athens, Greece, May 28th, 2013 1 / 57 Symmetric crypto: what textbooks and intro’s say Symmetric cryptographic primitives: Block ciphers Stream ciphers Hash functions And their modes-of-use Picture by GlasgowAmateur 2 / 57 Outline 1 The sponge construction 2 Inside Keccak 3 Outside Keccak (using sponge and duplex) 4 Keccak towards the SHA-3 standard 5 Further inside Keccak 3 / 57 The sponge construction Outline 1 The sponge construction 2 Inside Keccak 3 Outside Keccak (using sponge and duplex) 4 Keccak towards the SHA-3 standard 5 Further inside Keccak 4 / 57 The sponge construction Our beginning: RadioGatún Initiative to design hash/stream function (late 2005) rumours about NIST call for hash functions forming of Keccak Team starting point: fixing Panama [Daemen, Clapp, FSE 1998] RadioGatún [Keccak team, NIST 2nd hash workshop 2006] more conservative than Panama arbitrary output length primitive expressing security claim for arbitrary output length primitive Sponge functions [Keccak team, Ecrypt hash, 2007] … closest thing to a random oracle with a finite state … Sponge construction calling random permutation 5 / 57 The sponge construction The sponge construction More general than a hash function: arbitrary-length output Calls a b-bit permutation f, with b = r + c r bits of rate c bits of capacity (security parameter) 6 / 57 The sponge construction Generic security of the sponge construction Theorem (Indifferentiability of the sponge construction) The sponge construction calling a random permutation, S0[F], is 2 (tD, tS, N, e)-indifferentiable from a random oracle, for any tD, tS = O(N ), c e e ≈ N N < 2 and for any with > fP(N) 2c+1 . -
Broad View of Cryptographic Hash Functions
IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013 ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 www.IJCSI.org 239 Broad View of Cryptographic Hash Functions 1 2 Mohammad A. AlAhmad , Imad Fakhri Alshaikhli 1 Department of Computer Science, International Islamic University of Malaysia, 53100 Jalan Gombak Kuala Lumpur, Malaysia, 2 Department of Computer Science, International Islamic University of Malaysia, 53100 Jalan Gombak Kuala Lumpur, Malaysia Abstract Cryptographic hash function is a function that takes an arbitrary length as an input and produces a fixed size of an output. The viability of using cryptographic hash function is to verify data integrity and sender identity or source of information. This paper provides a detailed overview of cryptographic hash functions. It includes the properties, classification, constructions, attacks, applications and an overview of a selected dedicated cryptographic hash functions. Keywords-cryptographic hash function, construction, attack, classification, SHA-1, SHA-2, SHA-3. Figure 1. Classification of cryptographic hash function 1. INTRODUCTION CRHF usually deals with longer length hash values. An A cryptographic hash function H is an algorithm that takes an unkeyed hash function is a function for a fixed positive integer n * arbitrary length of message as an input {0, 1} and produce a which has, as a minimum, the following two properties: n fixed length of an output called message digest {0, 1} 1) Compression: h maps an input x of arbitrary finite bit (sometimes called an imprint, digital fingerprint, hash code, hash length, to an output h(x) of fixed bit length n. -
Secure Hash Algorithms
Keywords: secure hash, 1-wire, i2c, iButton, parasitic power, security, sha1, sha2, sha3, sha256, sha3-256, authentication, intellectual property protection, puf, physically unclonable function, chipdna, eeprom, cloning, counterfeit, medical disposables APPLICATION NOTE 7015 BACK TO BASICS: SECURE HASH ALGORITHMS Abstract: This application note goes over the basics of Secure Hash Algorithms (SHA) and discusses the variants of the algorithm. It then briefly touches on how the algorithm is used for authentication, including the concept of a Hashed Message Authentication Code (HMAC). It concludes by looking at some of the Maxim secure authenticators that can be used to very easily deploy SHA algorithms for security applications. Introduction In this application note, we will discuss the Secure Hash Algorithms (SHA) that are widely used in symmetric key cryptography. The basic idea behind a SHA function is to take data of variable size and condense it into a fixed-size bit string output. This concept is called hashing. The SHA functions are a family of hashing algorithms that have been developed over time through oversight by the National Institute of Standards and Technology (NIST). The latest of these is the SHA-3 function. Maxim has a family of secure authenticator products that provide both SHA-2 and SHA-3 functions. Figure 1 shows the basic concept of secure hash generation. Figure 1. Secure hash generation, basic concept. SHA Characteristics The SHA functions have the following characteristics: They have variable input length and fixed output length. They are one-way functions. Figure 1 shows that it is infeasible to use the resultant hash value to regenerate the input text other than trying each possible input text. -
Security Analysis of SHA-256 and Sisters
Security Analysis of SHA-256 and Sisters Henri Gilbert1 and Helena Handschuh2 1 France T´el´ecom R&D, FTRD/DTL/SSR 38-40 Rue du G´en´eral Leclerc, F-92131 Issy-Les Moulineaux [email protected] 2 GEMPLUS, Security Technologies Department 34 Rue Guynemer, F-92447 Issy-les-Moulineaux [email protected] Abstract. This paper studies the security of SHA-256, SHA-384 and SHA-512 against collision attacks and provides some insight into the security properties of the basic building blocks of the structure. It is concluded that neither Chabaud and Joux’s attack, nor Dobbertin-style attacks apply. Differential and linear attacks also don’t apply on the underlying structure. However we show that slightly simplified versions of the hash functions are surprisingly weak : whenever symmetric con- stants and initialization values are used throughout the computations, and modular additions are replaced by exclusive or operations, sym- metric messages hash to symmetric digests. Therefore the complexity of collision search on these modified hash functions potentially becomes as low as one wishes. 1 Introduction A cryptographic hash function can be informally defined as an easy to compute but hard to invert function which maps a message of arbitrary length into a fixed length (m-bit) hash value, and satisfies the property that finding a collision, i.e. two messages with the same hash value, is computationally infeasible. Most collision resistant hash function candidates proposed so far are based upon the iterated use of a so-called compression function, which maps a fixed-length (m+ n-bit) input value into a shorter fixed-length m-bit output value.