Survey on Chatbot Design Techniques in Speech Conversation Systems

Total Page:16

File Type:pdf, Size:1020Kb

Survey on Chatbot Design Techniques in Speech Conversation Systems (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 6, No. 7, 2015 Survey on Chatbot Design Techniques in Speech Conversation Systems Sameera A. Abdul-Kader Dr. John Woods School of Computer Science and Electronic School of Computer Science and Electronic Engineering/University of Essex Colchester/ UK Engineering/University of Essex Colchester/ UK Diyala University/ Diyala/ Iraq Abstract—Human-Computer Speech is gaining momentum as selected works are compared with those used in Loebner-Prize a technique of computer interaction. There has been a recent Chatbots. The findings are discussed and conclusions are upsurge in speech based search engines and assistants such as drawn at the end. Siri, Google Chrome and Cortana. Natural Language Processing (NLP) techniques such as NLTK for Python can be applied to II. BACKGROUND analyse speech, and intelligent responses can be found by designing an engine to provide appropriate human like A. Human-Computer Speech interaction responses. This type of programme is called a Chatbot, which is Speech recognition is one of the most natural and sought the focus of this study. This paper presents a survey on the after techniques in computer and networked device interaction techniques used to design Chatbots and a comparison is made has only recently become possible (last two decades) with the between different design techniques from nine carefully selected advent of fast computing. papers according to the main methods adopted. These papers are representative of the significant improvements in Chatbots in the Speech is a sophisticated signal and happens at different last decade. The paper discusses the similarities and differences levels: “semantic, linguistic, articulatory, and acoustic” [3]. in the techniques and examines in particular the Loebner prize- Speech is considered as the most natural among the aspects of winning Chatbots. human communication, owing to copious information implicitly existing beyond the meaning of the spoken words. Keywords—AIML; Chatbot; Loebner Prize; NLP; NLTK; SQL; One of the speech information extraction stages is converting Turing Test speech to text via Automatic Speech Recognition (ASR) and mining speech information [4]; then, the resulting text can be I. INTRODUCTION treated to extract the meaning of the words. Speech is one of the most powerful forms of communication between humans; hence, it is the researchers‟ Speech recognition is widely accepted as the future of ambition in the human computer interaction research field to interaction with computers and mobile applications; there is improve speech interaction between the human and the no need to use traditional input devices such as the mouse, computer in order to simulate human-human speech keyboard or touch sensitive screen and is especially useful for interaction. Speech interaction with modern networked users who do not have the ability to use these traditional computing devices has received increasing interest in the past devices [5]. It can help disabled people with paralysis, for few years with contributions from Google, Android and IOS. example, to interact with modern devices easily by voice only Because they are more natural than graphic-based interfaces, without moving their hands. spoken dialogue systems are beginning to form the primary B. Natural Language Toolkit (NLTK) interaction method with a machine [1]. Therefore, speech In order to deal with and manipulate the text resulting from interaction will play a significant role in humanising machines speech recognition and speech to text conversion, specific in the near future [2]. toolkits are needed to organise the text into sentences then Much research work has focussed on improving split them into words, to facilitate semantic and meaning recognition rates of the human voice and the technology is extraction. One of these toolkits is the widely used NLTK now approaching viability for speech based human computer which is a free plugin for Python. interaction. Speech Interaction splits into more than one area The Natural Language ToolKit (NLTK) is a set of including: speech recognition, speech parsing, NLP (Natural modules, tutorials and exercises which are open source and Language Processing), keyword identification, Chabot cover Natural Language Processing symbolically and design/personality, artificial intelligence etc. Chatbot is a statistically. NLTK was developed at the University of computer program that have the ability to hold a conversation Pennsylvania in 2001allowing computational linguistics with with human using Natural Language Speech. three educational applications in mind: projects, assignments In this paper, a survey of Chatbot design techniques in and demonstrations [6] [7]. It can be found within the Python speech conversation between the human and the computer is Libraries for Graph manipulation GPL open license. NLTK is presented. Nine studies that made identifiable contributions in used to split words in a string of text and separate the text into Chatbot design in the last ten years are selected and then, parts of speech by tagging word labels according to their reviewed. The different techniques used for Chatbots in the positions and functions in the sentence. The resulting tagged 72 | P a g e www.ijacsa.thesai.org (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 6, No. 7, 2015 words are then processed to extract the meaning and produce a response as speech or action as required. Different grammar rules are used to categorise the tagged words in the text into groups or phrases relating to their neighbours and positions. This type of grouping is called chunking into phrases, such as noun phrases and verb phrases. C. Chatbot strategies To give suitable answers to keywords or phrases extracted from speech and to keep conversation continuous, there is a need to build a dialogue system (programme) called a Chatbot (Chatter-Bot). Chatbots can assist in human computer interaction and they have the ability to examine and influence the behaviour of the user [8] by asking questions and Fig. 1. Components of Chatbot [11] responding to the user's questions. The Chatbot is a computer programme that mimics intelligent conversation. The input to D. Chatbot Fundamental Design Techniques and approaches this programme is natural language text, and the application To design any Chatbot, the designer must be familiar with should give an answer that is the best intelligent response to a number of techniques: the input sentence. This process is repeated as the conversation continues [9] and the response is either text or 1) Parsing: this technique includes analysing the input speech. text and manipulating it by using a number of NLP functions; Building a Chatbot needs highly professional for example, trees in Python NLTK. programming skills and experienced developers to achieve 2) Pattern matching: it is the technique that is used in even a basic level of realism. There is a complicated most Chatbots and it is quite common in question-answer development platform behind any Chatbot which will only be systems depending on matching types, such as natural as good as its knowledge base which maps a user‟s words into language enquiries, simple statements, or semantic meaning the most appropriate response. The bot developer usually of enquiries [12]. builds the knowledge base as well. However, there are some 3) AIML: it is one of the core techniques that are used in platforms which provide a learning environment. Writing a common Chatbot design. More details about this technique perfect Chatbot is very difficult because it needs a very large and the language used are explained in section 2.5 below. database and must give reasonable answers to all interactions. 4) Chat Script: is the technique that helps when no There are a number of approaches to create a knowledge base for a Chatbot and include writing by hand and learning from a matches occur in AIML. It concentrates on the best syntax to corpus. Learning here means saving new phrases and then build a sensible default answer. It gives a set of functionalities using them later to give appropriate answers for similar such as variable concepts, facts, and logical and/or. phrases [10]. 5) SQL and relational database: is a technique used recently in Chatbot design in order to make the Chatbot Designing a Chatbot software package requires the identification of the constituent parts. A Chatbot can be remember previous conversations. More details and divided into three parts: Responder, Classifier and explanation are provided in section 2.6 below. Graphmaster (as shown in Figure. 1) [11], which are described 6) Markov Chain: is used in Chatbots to build responses as follows: that are more applicable probabilistically and, consequently, are more correct. The idea of Markov Chains is that there is a 1) Responder: it is the part that plays the interfacing role fixed probability of occurrences for each letter or word in the between the bot’s main routines and the user. The tasks of the same textual data set [13]. responder are: transferring the data from the user to the 7) Language tricks: these are sentences, phrases, or even Classifier and controlling the input and output. paragraphs available in Chatbots in order to add variety to 2) Classifier: it is the part between the Responder and the the knowledge base and make it more convincing. The types of Graphmaster. This layer’s functions are: filtering and language tricks are: normalising the input, segmenting the input entered by the Canned responses. user into logical components, transferring the normalised sentence into the Graphmaster, processing the output from the Typing errors and simulating key strokes. Graphmaster, and handling the instructions of the database Model of personal history. syntax (e.g. AIML). 3) Graphmaster: is the part for pattern matching that Non Sequitur (not a logical conclusion) does the following tasks: organising the brain’s contents, Each of these language tricks is used to satisfy a specific storage and holding the pattern matching algorithms.
Recommended publications
  • Aviation Speech Recognition System Using Artificial Intelligence
    SPEECH RECOGNITION SYSTEM OVERVIEW AVIATION SPEECH RECOGNITION SYSTEM USING ARTIFICIAL INTELLIGENCE Appareo’s embeddable AI model for air traffic control (ATC) transcription makes the company one of the world leaders in aviation artificial intelligence. TECHNOLOGY APPLICATION As featured in Appareo’s two flight apps for pilots, Stratus InsightTM and Stratus Horizon Pro, the custom speech recognition system ATC Transcription makes the company one of the world leaders in aviation artificial intelligence. ATC Transcription is a recurrent neural network that transcribes analog or digital aviation audio into text in near-real time. This in-house artificial intelligence, trained with Appareo’s proprietary dataset of flight-deck audio, takes the terabytes of training data and its accompanying transcriptions and reduces that content to a powerful 160 MB model that can be run inside the aircraft. BENEFITS OF ATC TRANSCRIPTION: • Provides improved situational awareness by identifying, capturing, and presenting ATC communications relevant to your aircraft’s operation for review or replay. • Provides the ability to stream transcribed speech to on-board (avionic) or off-board (iPad/ iPhone) display sources. • Provides a continuous representation of secondary audio channels (ATIS, AWOS, etc.) for review in textual form, allowing your attention to focus on a single channel. • ...and more. What makes ATC Transcription special is the context-specific training work that Appareo has done, using state-of-the-art artificial intelligence development techniques, to create an AI that understands the aviation industry vocabulary. Other natural language processing work is easily confused by the cadence, noise, and vocabulary of the aviation industry, yet Appareo’s groundbreaking work has overcome these barriers and brought functional artificial intelligence to the cockpit.
    [Show full text]
  • Deep Learning for Dialogue Systems
    Deep Learning for Dialogue Systems Yun-Nung Chen Asli Celikyilmaz Dilek Hakkani-Tur¨ National Taiwan University Microsoft Research Google Research Taipei, Taiwan Redmond, WA Mountain View, CA [email protected] [email protected] [email protected] Abstract Goal-oriented spoken dialogue systems have been the most prominent component in todays vir- tual personal assistants, which allow users to speak naturally in order to finish tasks more effi- ciently. The advancement of deep learning technologies has recently risen the applications of neural models to dialogue modeling. However, applying deep learning technologies for build- ing robust and scalable dialogue systems is still a challenging task and an open research area as it requires deeper understanding of the classic pipelines as well as detailed knowledge of the prior work and the recent state-of-the-art work. Therefore, this tutorial is designed to focus on an overview of dialogue system development while describing most recent research for building dialogue systems, and summarizing the challenges, in order to allow researchers to study the po- tential improvements of the state-of-the-art dialogue systems. The tutorial material is available at http://deepdialogue.miulab.tw. 1 Tutorial Overview With the rising trend of artificial intelligence, more and more devices have incorporated goal-oriented spoken dialogue systems. Among popular virtual personal assistants, Microsoft’s Cortana, Apple’s Siri, Amazon Alexa, and Google Assistant have incorporated dialogue system modules in various devices, which allow users to speak naturally in order to finish tasks more efficiently. Traditional conversational systems have rather complex and/or modular pipelines.
    [Show full text]
  • A Comparison of Online Automatic Speech Recognition Systems and the Nonverbal Responses to Unintelligible Speech
    A Comparison of Online Automatic Speech Recognition Systems and the Nonverbal Responses to Unintelligible Speech Joshua Y. Kim1, Chunfeng Liu1, Rafael A. Calvo1*, Kathryn McCabe2, Silas C. R. Taylor3, Björn W. Schuller4, Kaihang Wu1 1 University of Sydney, Faculty of Engineering and Information Technologies 2 University of California, Davis, Psychiatry and Behavioral Sciences 3 University of New South Wales, Faculty of Medicine 4 Imperial College London, Department of Computing Abstract large-scale commercial products such as Google Home and Amazon Alexa. Mainstream ASR Automatic Speech Recognition (ASR) systems use only voice as inputs, but there is systems have proliferated over the recent potential benefit in using multi-modal data in order years to the point that free platforms such to improve accuracy [1]. Compared to machines, as YouTube now provide speech recognition services. Given the wide humans are highly skilled in utilizing such selection of ASR systems, we contribute to unstructured multi-modal information. For the field of automatic speech recognition example, a human speaker is attuned to nonverbal by comparing the relative performance of behavior signals and actively looks for these non- two sets of manual transcriptions and five verbal ‘hints’ that a listener understands the speech sets of automatic transcriptions (Google content, and if not, they adjust their speech Cloud, IBM Watson, Microsoft Azure, accordingly. Therefore, understanding nonverbal Trint, and YouTube) to help researchers to responses to unintelligible speech can both select accurate transcription services. In improve future ASR systems to mark uncertain addition, we identify nonverbal behaviors transcriptions, and also help to provide feedback so that are associated with unintelligible speech, as indicated by high word error that the speaker can improve his or her verbal rates.
    [Show full text]
  • Learned in Speech Recognition: Contextual Acoustic Word Embeddings
    LEARNED IN SPEECH RECOGNITION: CONTEXTUAL ACOUSTIC WORD EMBEDDINGS Shruti Palaskar∗, Vikas Raunak∗ and Florian Metze Carnegie Mellon University, Pittsburgh, PA, U.S.A. fspalaska j vraunak j fmetze [email protected] ABSTRACT model [10, 11, 12] trained for direct Acoustic-to-Word (A2W) speech recognition [13]. Using this model, we jointly learn to End-to-end acoustic-to-word speech recognition models have re- automatically segment and classify input speech into individual cently gained popularity because they are easy to train, scale well to words, hence getting rid of the problem of chunking or requiring large amounts of training data, and do not require a lexicon. In addi- pre-defined word boundaries. As our A2W model is trained at the tion, word models may also be easier to integrate with downstream utterance level, we show that we can not only learn acoustic word tasks such as spoken language understanding, because inference embeddings, but also learn them in the proper context of their con- (search) is much simplified compared to phoneme, character or any taining sentence. We also evaluate our contextual acoustic word other sort of sub-word units. In this paper, we describe methods embeddings on a spoken language understanding task, demonstrat- to construct contextual acoustic word embeddings directly from a ing that they can be useful in non-transcription downstream tasks. supervised sequence-to-sequence acoustic-to-word speech recog- Our main contributions in this paper are the following: nition model using the learned attention distribution. On a suite 1. We demonstrate the usability of attention not only for aligning of 16 standard sentence evaluation tasks, our embeddings show words to acoustic frames without any forced alignment but also for competitive performance against a word2vec model trained on the constructing Contextual Acoustic Word Embeddings (CAWE).
    [Show full text]
  • A Survey on Dialogue Systems: Recent Advances and New Frontiers
    A Survey on Dialogue Systems: Recent Advances and New Frontiers Hongshen Cheny, Xiaorui Liuz, Dawei Yiny, and Jiliang Tangz yData Science Lab, JD.com zData Science and Engineering Lab, Michigan State University [email protected], [email protected],fxiaorui,[email protected] ABSTRACT May I know your name ? Dialogue systems have attracted more and more attention. Dialogue State NLU Recent advances on dialogue systems are overwhelmingly Tracking contributed by deep learning techniques, which have been employed to enhance a wide range of big data applications such as computer vision, natural language processing, and recommender systems. For dialogue systems, deep learning I am Robot. can leverage a massive amount of data to learn meaningful NLG Policy learning feature representations and response generation strategies, while requiring a minimum amount of hand-crafting. In this article, we give an overview to these recent advances on di- Figure 1: Traditional Pipeline for Task-oriented Systems. alogue systems from various perspectives and discuss some possible research directions. In particular, we generally di- vide existing dialogue systems into task-oriented and non- certain tasks (e.g. finding products, and booking accommo- task-oriented models, then detail how deep learning tech- dations and restaurants). The widely applied approaches to niques help them with representative algorithms and finally task-oriented systems are to treat the dialogue response as a discuss some appealing research directions that can bring pipeline as shown in Figure1. The systems first understand the dialogue system research into a new frontier. the message given by human, represent it as a internal state, then take some actions according to the policy with respect 1.
    [Show full text]
  • A Robust Dialogue System with Spontaneous Speech
    A Robust Dialogue System with Spontaneous Speech Understanding and Cooperative Response Toshihiko ITOH, Akihiro DENDA, Satoru KOGURE and Seiichi NAKAGAWA Department of Information and Computer Sciences Toyohashi University of Technology Tenpaku-cho, Toyohashi-shi, Aichi-ken, 441, Japan E-mail address • {itoh, akihiro, kogure, nakagawa}@slp.tutics.tut.ac.jp 1 Introduction 2 A Multi-Modal Dialogue System A spoken dialogue system that can understand spon- The domain of our dialogue system is "Mt. Fuji taneous speech needs to handle extensive range of sightseeing guidance (the vocabulary size is 292 speech in comparision with the read speech that has words for the recognizer and 948 words for the inter- been studied so far. The spoken language has looser preter, and the test-set word perplexity is 103)", The restriction of the grammar than the written language dialogue system is composed of 4 parts: Input by and has ambiguous phenomena such as interjections, speech recognizer and touch screen, graphical user ellipses, inversions, repairs, unknown words and so interface, interpreter, and response generator. The on. It must be noted that the recognition rate of the latter two parts are described in Sections 3 and 4. speech recognizer is limited by the trade-off between the looseness of linguistic constraints and recogni- 2.1 Spontaneous Speech Recognizer tion precision , and that the recognizer may out- The speech recognizer uses a frame-synchronous one put a sentence as recognition results which human pass Viterbi algorithm and Earley like parser for would never say. Therefore, the interpreter that re- context-free grammar, while using HMMs as sylla- ceives recognized sentences must cope not only with ble units.
    [Show full text]
  • Synthesis and Recognition of Speech Creating and Listening to Speech
    ISSN 1883-1974 (Print) ISSN 1884-0787 (Online) National Institute of Informatics News NII Interview 51 A Combination of Speech Synthesis and Speech Oct. 2014 Recognition Creates an Affluent Society NII Special 1 “Statistical Speech Synthesis” Technology with a Rapidly Growing Application Area NII Special 2 Finding Practical Application for Speech Recognition Feature Synthesis and Recognition of Speech Creating and Listening to Speech A digital book version of “NII Today” is now available. http://www.nii.ac.jp/about/publication/today/ This English language edition NII Today corresponds to No. 65 of the Japanese edition [Advance Notice] Great news! NII Interview Yamagishi-sensei will create my voice! Yamagishi One result is a speech translation sys- sound. Bit (NII Character) A Combination of Speech Synthesis tem. This system recognizes speech and translates it Ohkawara I would like your comments on the fu- using machine translation to synthesize speech, also ture challenges. and Speech Recognition automatically translating it into every language to Ono The challenge for speech recognition is how speak. Moreover, the speech is created with a human close it will come to humans in the distant speech A Word from the Interviewer voice. In second language learning, you can under- case. If this study is advanced, it will be possible to Creates an Affluent Society stand how you should pronounce it with your own summarize the contents of a meeting and to automati- voice. If this is further advanced, the system could cally take the minutes. If a robot understands the con- have an actor in a movie speak in a different language tents of conversations by multiple people in a natural More and more people have begun to use smart- a smartphone, I use speech input more often.
    [Show full text]
  • Natural Language Processing in Speech Understanding Systems
    Working Paper Series ISSN 11 70-487X Natural language processing in speech understanding systems by Dr Geoffrey Holmes Working Paper 92/6 September, 1992 © 1992 by Dr Geoffrey Holmes Department of Computer Science The University of Waikato Private Bag 3105 Hamilton, New Zealand Natural Language P rocessing In Speech Understanding Systems G. Holmes Department of Computer Science, University of Waikato, New Zealand Overview Speech understanding systems (SUS's) came of age in late 1071 as a result of a five year devel­ opment. programme instigated by the Information Processing Technology Office of the Advanced Research Projects Agency (ARPA) of the Department of Defense in the United States. The aim of the progranune was to research and tlevelop practical man-machine conuuunication system s. It has been argued since, t hat. t he main contribution of this project was not in the development of speech science, but in the development of artificial intelligence. That debate is beyond the scope of th.is paper, though no one would question the fact. that the field to benefit most within artificial intelligence as a result of this progranune is natural language understan ding. More recent projects of a similar nature, such as projects in the Unite<l Kiug<lom's ALVEY programme and Ew·ope's ESPRIT programme have added further developments to this important field. Th.is paper presents a review of some of the natural language processing techniques used within speech understanding syst:ems. In particular. t.ecl.miq11es for handling syntactic, semantic and pragmatic informat.ion are ,Uscussed. They are integrated into SUS's as knowledge sources.
    [Show full text]
  • Arxiv:2007.00183V2 [Eess.AS] 24 Nov 2020
    WHOLE-WORD SEGMENTAL SPEECH RECOGNITION WITH ACOUSTIC WORD EMBEDDINGS Bowen Shi, Shane Settle, Karen Livescu TTI-Chicago, USA fbshi,settle.shane,[email protected] ABSTRACT Segmental models are sequence prediction models in which scores of hypotheses are based on entire variable-length seg- ments of frames. We consider segmental models for whole- word (“acoustic-to-word”) speech recognition, with the feature vectors defined using vector embeddings of segments. Such models are computationally challenging as the number of paths is proportional to the vocabulary size, which can be orders of magnitude larger than when using subword units like phones. We describe an efficient approach for end-to-end whole-word segmental models, with forward-backward and Viterbi de- coding performed on a GPU and a simple segment scoring function that reduces space complexity. In addition, we inves- tigate the use of pre-training via jointly trained acoustic word embeddings (AWEs) and acoustically grounded word embed- dings (AGWEs) of written word labels. We find that word error rate can be reduced by a large margin by pre-training the acoustic segment representation with AWEs, and additional Fig. 1. Whole-word segmental model for speech recognition. (smaller) gains can be obtained by pre-training the word pre- Note: boundary frames are not shared. diction layer with AGWEs. Our final models improve over segmental models, where the sequence probability is com- prior A2W models. puted based on segment scores instead of frame probabilities. Index Terms— speech recognition, segmental model, Segmental models have a long history in speech recognition acoustic-to-word, acoustic word embeddings, pre-training research, but they have been used primarily for phonetic recog- nition or as phone-level acoustic models [11–18].
    [Show full text]
  • Improving Named Entity Recognition Using Deep Learning with Human in the Loop
    Demonstration Improving Named Entity Recognition using Deep Learning with Human in the Loop Ticiana L. Coelho da Silva Regis Pires Magalhães José Antônio F. de Macêdo Insight Data Science Lab Insight Data Science Lab Insight Data Science Lab Fortaleza, Ceara, Brazil Fortaleza, Ceara, Brazil Fortaleza, Ceara, Brazil [email protected] [email protected] [email protected] David Araújo Abreu Natanael da Silva Araújo Vinicius Teixeira de Melo Insight Data Science Lab Insight Data Science Lab Insight Data Science Lab Fortaleza, Ceara, Brazil Fortaleza, Ceara, Brazil Fortaleza, Ceara, Brazil [email protected] [email protected] [email protected] Pedro Olímpio Pinheiro Paulo A. L. Rego Aloisio Vieira Lira Neto Insight Data Science Lab Federal University of Ceara Brazilian Federal Highway Police Fortaleza, Ceara, Brazil Fortaleza, Ceara, Brazil Fortaleza, Ceara, Brazil [email protected] [email protected] [email protected] ABSTRACT Even, orthographic features and language-specific knowledge Named Entity Recognition (NER) is a challenging problem in Nat- resources as gazetteers are widely used in NER, such approaches ural Language Processing (NLP). Deep Learning techniques have are costly to develop, especially for new languages and new do- been extensively applied in NER tasks because they require little mains, making NER a challenge to adapt to these scenarios[10]. feature engineering and are free from language-specific resources, Deep Learning models have been extensively used in NER learning important features from word or character embeddings tasks [3, 5, 9] because they require little feature engineering and trained on large amounts of data. However, these techniques they may learn important features from word or character embed- are data-hungry and require a massive amount of training data.
    [Show full text]
  • Discriminative Transfer Learning for Optimizing ASR and Semantic Labeling in Task-Oriented Spoken Dialog
    Discriminative Transfer Learning for Optimizing ASR and Semantic Labeling in Task-oriented Spoken Dialog Yao Qian, Yu Shi and Michael Zeng Microsoft Speech and Dialogue Research Group, Redmond, WA, USA fyaoqian,yushi,[email protected] Abstract universal representation for the common-sense knowledge and lexical semantics hiding in the data. Adapting pre-trained trans- Spoken language understanding (SLU) tries to decode an in- former to ASR lattice was proposed to SDS in [7], where lattice put speech utterance such that effective semantic actions can reachability masks and lattice positional encoding were utilized be taken to continue meaningful and interactive spoken dialog to enable lattice inputs during fine-tuning. In [8], ASR-robust (SD). The performance of SLU, however, can be adversely af- contextualized embeddings were learned by using word acous- fected by automatic speech recognition (ASR) errors. In this tic confusion. The studies on ATIS corpus [9] have shown that paper, we exploit transfer learning in a Generative pre-trained both approaches could improve the robustness of NLU to ASR Transformer (GPT) to jointly optimize ASR error correction errors. and semantic labeling in terms of dialog act and slot-value for a given user’s spoken response in the context of SD system Meanwhile, many researchers tried to skip ASR entirely or (SDS). With the encoded ASR output and dialog history as use only partial information, e.g., phone sequence instead of context, a conditional generative model is trained to generate word sequence, extracted from its modules for SLU [10–12]. transcripts correction, dialog act, and slot-values successively. In [10], it has studied techniques for building call routers from The proposed generation model is jointly optimized as a clas- scratch without any knowledge of the application vocabulary sification task, which utilizes the ground-truth and N-best hy- or grammar.
    [Show full text]
  • Language Modelling for Speech Recognition
    Language Modelling for Speech Recognition • Introduction • n-gram language models • Probability estimation • Evaluation • Beyond n-grams 6.345 Automatic Speech Recognition Language Modelling 1 Language Modelling for Speech Recognition • Speech recognizers seek the word sequence Wˆ which is most likely to be produced from acoustic evidence A P(Wˆ |A)=m ax P(W |A) ∝ max P(A|W )P(W ) W W • Speech recognition involves acoustic processing, acoustic modelling, language modelling, and search • Language models (LMs) assign a probability estimate P(W ) to word sequences W = {w1,...,wn} subject to � P(W )=1 W • Language models help guide and constrain the search among alternative word hypotheses during recognition 6.345 Automatic Speech Recognition Language Modelling 2 Language Model Requirements � Constraint Coverage � NLP Understanding � 6.345 Automatic Speech Recognition Language Modelling 3 Finite-State Networks (FSN) show me all the flights give restaurants display • Language space defined by a word network or graph • Describable by a regular phrase structure grammar A =⇒ aB | a • Finite coverage can present difficulties for ASR • Graph arcs or rules can be augmented with probabilities 6.345 Automatic Speech Recognition Language Modelling 4 Context-Free Grammars (CFGs) VP NP V D N display the flights • Language space defined by context-free rewrite rules e.g., A =⇒ BC | a • More powerful representation than FSNs • Stochastic CFG rules have associated probabilities which can be learned automatically from a corpus • Finite coverage can present difficulties
    [Show full text]