A&A 540, A124 (2012) Astronomy DOI: 10.1051/0004-6361/201118194 & c ESO 2012 Astrophysics Does Bose-Einstein condensation of CMB photons cancel µ distortions created by dissipation of sound waves in the early Universe? R. Khatri1,R.A.Sunyaev1,2,3, and J. Chluba4 1 Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany e-mail:
[email protected] 2 Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia 3 Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, USA 4 Canadian Institute for Theoretical Astrophysics, 60 St George Street, Toronto, ON M5S 3H8, Canada Received 3 October 2011 / Accepted 12 February 2012 ABSTRACT The difference in the adiabatic indices of photons and non-relativistic baryonic matter in the early Universe causes the electron temperature to be slightly lower than the radiation temperature. Comptonization of photons with colder electrons results in the transfer of energy from photons to electrons and ions, owing to the recoil effect (spontaneous and induced). Thermalization of photons with a colder plasma results in the accumulation of photons in the Rayleigh-Jeans tail, aided by stimulated recoil, while the higher frequency final initial spectrum tries to approach Planck spectrum at the electron temperature Tγ = Te < Tγ ; i.e., Bose-Einstein condensation of photons occurs. We find new solutions of the Kompaneets equation describing this effect. No actual condensate is, in reality, possible since the process is very slow and photons drifting to low frequencies are efficiently absorbed by bremsstrahlung and double Compton processes. The spectral distortions created by Bose-Einstein condensation of photons are within an order of magnitude (for the present range of allowed cosmological parameters), with exactly the same spectrum but opposite in sign, of those created by diffusion damping of the acoustic waves on small scales corresponding to comoving wavenumbers 45 < k < 104 Mpc−1.