Vimentin) Sca€Old

Total Page:16

File Type:pdf, Size:1020Kb

Vimentin) Sca€Old Oncogene (1998) 16, 3423 ± 3434 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Cytoplasmic retention of mutant tsp53 is dependent on an intermediate ®lament protein (Vimentin) scaold Oliver Klotzsche1,DoÈrte Etzrodt2, Heinz Hohenberg1, Wolfgang Bohn1 and Wolfgang Deppert1 1Heinrich-Pette-Institut fuÈr Experimentelle Virologie und Immunologie an der UniversitaÈt Hamburg, Martinistr. 52, D-20251 Hamburg, Germany The temperature-sensitive mutant tsp53val135 accumulates these mutations do not simply inactivate the tumor in the cytoplasm of cells kept at the non-permissive suppressor functions of wild-type (wt) p53, but provide temperature (398C), but is rapidly transported into the a `gain of function' for the mutant (mt) p53 (Deppert, cell nucleus at the permissive temperature (308C). tsp53 1996; Dittmer et al., 1993). This hypothesis is thus may serve as a model for analysing cellular supported by a variety of biological and biochemical parameters in¯uencing the subcellular location of p53. observations, which strongly suggest that mt p53 exerts Here we provide evidence that retention of tsp53 in the properties of a dominant oncogene. cytoplasm at the non-permissive temperature is due to The multitude of functions ascribed to either wt or cytoskeletal anchorage of the p53 protein. Two sublines mt p53 requires that the functional properties of these of C6 rat glioma cells diering in their expression of the proteins are tightly and coordinatedly regulated. In intermediate ®lament protein vimentin (vimentin expres- addition to various posttranslational modi®cations and sing or vimentin negative cells) were stably transfected interactions with viral and cellular proteins (Deppert, with a vector encoding tsp53. Whereas cells of vimentin 1994a, b), the subcellular location of p53 seems to be expressing C6 subclones retained tsp53 in the cytoplasm an important determinant of its function (Shaulsky et at the non-permissive temperature, cells of vimentin al., 1991). The p53 molecule is endowed with three negative subclones exclusively harbored the tsp53 within nuclear translocation signals (NLS) (Shaulsky et al., their nuclei. Intermediate ®lament de®cient cells that had 1990b), but, in addition, also contains a nuclear export been reconstituted with a full length vimentin protein signal (Middeler et al., 1997), suggesting that p53 is again showed a cytoplasmic localization of tsp53, able to shuttle between the cytoplasmic and the nuclear whereas in cells expressing a C-terminally truncated compartment, depending on functional requirements. (tail-less) vimentin tsp53 localized to the nucleus. We Indeed, there is ample evidence for a function- conclude that cytoplasmic sequestration of tsp53 requires dependent localization of p53 to either cellular an intact intermediate ®lament system. compartment. When resting cells resume cycling, wt p53 remains in the cytoplasm during G1 phase, but is Keywords: nuclear exclusion; cytoplasmic anchorage; translocated into the nucleus at the onset of S-phase temperature sensitive mutant p53; vimentin; intermedi- (Shaulsky et al., 1990a), in accordance with a role of wt ate ®laments; C6 rat glioma cells p53 in translational control of its own mRNA in G1 (Mosner et al., 1995). During dierentiation of neurons and oligodendrocytes explanted from embryonic rat brain, wt p53 is translocated into the nucleus and is Introduction relocated to the cytoplasm in dierentiated cells (Eizenberg et al., 1996). Similarly, wt p53 is over- The tumor suppressor p53 is a multifunctional protein, expressed and located in the cytoplasm in normal exerting a variety of functions in cell cycle control, lactating breast tissue suggesting a role for nuclear DNA repair, DNA recombination, initiation of exclusion of p53 in the developing mammary gland apoptosis, and control of dierentiation (Gottlieb and (Moll et al., 1992). Oren, 1996; Ko and Prives, 1996), rendering it the Variations in subcellular localization were also currently most prominent `gate-keeper of cell growth noticed in tumor cells expressing wt p53. In certain and dierentiation' (Levine, 1997). In line with this mammary carcinomas and in undierentiated neuro- central role of p53 is the observation that inactivation blastomas wt p53 accumulates within the cytoplasm, of wild-type speci®c functions of p53 by mutations in whereas it localizes to the nucleus in dierentiated the p53 gene is a very frequent event in human tumors neuroblastomas (Moll et al., 1992, 1995). (Hollstein et al., 1991; Hainhaut et al., 1997). Most of Like the subcellular localization of wt p53, also that these mutations are missense point mutations, leading of mt p53 is subject to considerable variation, ranging to the expression of a mutant p53 carrying a single from exclusively cytoplasmic to exclusively nuclear in amino acid substitution (Cho et al., 1994; Hollstein et tumors and in transformed cells (Porter et al., 1992; al., 1996; Medcalf et al., 1992). The unusual mutational Rotter et al., 1983; Takahashi and Suzuki, 1994). spectrum (490% missense point mutations, localized Importantly, the subcellular localization of mt p53 is within the p53 core domain) led to the hypothesis that not a function of speci®c mutations in the p53 gene, as in human glioblastomas a speci®c mt p53 protein (codon 273; Arg?Cys) localized to the nuclei in some Correspondence: W Bohn tumors, but to the cytoplasm in others, indicating that 2Current address: Klinik fuÈ r Innere Medizin an der UniversitaÈ t Rostock Ernst Heydemannstr. 6, 18055 Rostock, Germany the subcellular localization of mt p53 is not determined Received 9 March 1998; accepted 27 May 1998 by the mutation itself, but may be dependent on Cytoplasmic retention of tsp53 O Klotzsche et al 3424 environmental conditions in the cell (Ali et al., 1994), proteins can easily be addressed by the use of and/or its functional status. The latter has been inhibitors which speci®cally aect the structural observed with mt p53 in MethA tumor cells, which arrangement of these ®lament systems. In contrast, in cycling cells is predominantly nuclear, but becomes an involvement of intermediate ®laments is more transferred to the cytoplasm when the cells growth dicult to assay due to the stability of this system arrest at the restriction point in G1 (Steinmeyer and under physiological conditions, and due to the absence Deppert, 1988). All these data argue that the of speci®c inhibitors. Therefore we used a cell system subcellular localization of p53 is subject to certain which is based on C6 rat glioma cells. From these cells regulatory mechanisms within the cell, some of which subclones were isolated (RoÈ ser et al., 1991) that either might be connected with the status of dierentiation. express or do not express vimentin, the most common However, the factors regulating the presence both of intermediate ®lament protein expressed in cultured cells mt and of wt p53 in dierent subcellular locations are (Traub and Vorgias, 1983). Such cells thus either still largely unknown. contain or are de®cient of a cytoplasmic intermediate The temperature-sensitive mutant p53val135 in the past ®lament system. Ectopic expression of tsp53 in these has proven a useful system to analyse cellular cells demonstrated that tsp53 was strictly nuclear in parameters in¯uencing the subcellular location of both cells of vimentin-negative subclones, whereas cytoplas- mt and wt p53. At the non-permissive temperature mic sequestration of tsp53 was dependent on an intact (4378C), tsp53 is present in its mutant form and intermediate ®lament system. The system of vimentin- localizes predominantly to the cytoplasm. Upon shift expressing and vimentin-negative C6 subclones should to the permissive growth temperature (30 ± 328C), the provide a valuable experimental system for the tsp53 adopts its wild-type form, becomes translocated identi®cation of mechanisms regulating the subcellular to the cell nucleus and exerts wt p53 functions localization of p53. (Martinez et al., 1991; Michalovitz et al., 1990), i.e. induction of growth arrest or apoptosis, depending on cell type. However, there is neither a strict dependence Results for a cytoplasmic location of tsp53 when present in its mutant form, nor for a nuclear location when present tsp53 is bound to the cytoskeleton in IF (vimentin) in its wild-type form, indicating that cellular and/or positive cells functional parameters rather than its conformational state determine the subcellular location of tsp53. Thus Cytoskeletal anchorage of p53 was ®rst assayed in the cytoplasmic localization of tsp53 at the nonpermis- vimentin-expressing C6D8 cells stably transfected with sive temperature can be converted to a nuclear one by tsp53. C6D8 cells contain intermediate ®laments treating the cells with translational inhibitors, indicat- (vimentin) in addition to microtubules and actin ing that continuous protein synthesis is necessary to ®laments (RoÈ ser et al., 1991). By immunofluores- retain this mutant protein within the cytoplasm, cence, Western- and Northern-blotting, the parental possibly via short lived cytoplasmic anchor proteins cells do not express detectable levels of endogenous (Gannon and Lane, 1991). Conversely, tsp53 does not p53, which could interfere with or mask the function of localize to the nucleus in PC12 cells even at the an ectopic p53 (data not shown). By immunofluores- permissive temperature, and is redistributed to the cence and by Western-blotting the p53 antibodies used cytoplasm in clone
Recommended publications
  • Uniloc: a Universal Protein Localization Site Predictor For
    bioRxiv preprint doi: https://doi.org/10.1101/252916; this version posted January 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. UniLoc: A universal protein localization site predictor for eukaryotes and prokaryotes Hsin-Nan Lin, Ching-Tai Chen, Ting-Yi Sung* and Wen-Lian Hsu* Institute of Information Science, Academia Sinica, Taipei, Taiwan * To whom correspondence should be addressed. Tel: +886-2-2788-3799; Fax: +886-2-2782-4814; Email: [email protected]. Correspondence may also be addressed to [email protected]. ABSTRACT There is a growing gap between protein subcellular localization (PSL) data and protein sequence data, raising the need for computation methods to rapidly determine subcellular localizations for uncharacterized proteins. Currently, the most efficient computation method involves finding sequence-similar proteins (hereafter referred to as similar proteins) in the annotated database and transferring their annotations to the target protein. When a sequence-similarity search fails to find similar proteins, many PSL predictors adopt machine learning methods for the prediction of localization sites. We proposed a universal protein localization site predictor - UniLoc - to take advantage of implicit similarity among proteins through sequence analysis alone. The notion of related protein words is introduced to explore the localization site assignment of uncharacterized proteins. UniLoc is found to identify useful template proteins and produce reliable predictions when similar proteins were not available.
    [Show full text]
  • The Desmoplakin Carboxyl Terminus Coaligns with and Specifically Disrupts Intermediate Filament Networks When Expressed in Cultured Cells Thaddeus S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central The Desmoplakin Carboxyl Terminus Coaligns with and Specifically Disrupts Intermediate Filament Networks When Expressed in Cultured Cells Thaddeus S. Stappenbeck and Kathleen J. Green Department of Pathology and the Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611 Abstract. Specific interactions between desmoplakins tides including the 90-kD carboxy-terminal globular I and 11 (DP I and II) and other desmosomal or cyto- domain of DP I specifically colocalized with and ulti- skeletal molecules have been difficult to determine in mately resulted in the complete disruption of IF in part because of the complexity and insolubility of the both cell lines. This effect was specific for IF as micro- desmosome and its constituents . We have used a mo- tubule and microfilament networks were unaltered . lecular genetic approach to investigate the role that This effect was also specific for the carboxyl terminus DP I and 11 may play in the association of the desmo- of DP, as the expression of the 95-kD rod domain of somal plaque with cytoplasmic intermediate filaments DP I did not visibly alter IF networks. Immunogold (IF) . A series of mammalian expression vectors en- localization of COS-7 cells transfected with constructs coding specific predicted domains of DP I were tran- including the carboxyl terminus of DP demonstrated siently expressed in cultured cells that form (COS-7) an accumulation of mutant protein in perinuclear aggre- and do not form (NIH-3T3) desmosomes. Sequence gates within which IF subunits were sequestered.
    [Show full text]
  • Evidence That Subcellular Localization of a Bacterial Membrane Protein Is Achieved by Diffusion and Capture
    Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture David Z. Rudner, Qi Pan, and Richard M. Losick* Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138 Contributed by Richard M. Losick, April 16, 2002 Bacteria lack an endoplasmic reticulum, a Golgi apparatus, and uted uniformly throughout the cell. In the third model, which we transport vesicles and yet are capable of sorting and delivering call diffusion and capture, the protein is inserted randomly into integral membrane proteins to particular sites within the cell with all membranes and becomes localized by diffusion to, and high precision. What is the pathway by which membrane proteins capture at, the site where it will ultimately reside. reach their proper subcellular destination in bacteria? We have An attractive system in which to address the question of how addressed this question by using green fluorescent protein (GFP) membrane proteins localize is the process of sporulation in B. fused to a polytopic membrane protein (SpoIVFB) that is involved subtilis. Sporulation takes place in two principal morphological in the process of sporulation in the bacterium Bacillus subtilis. stages (7). In the first stage, the sporulating cell (or sporangium) SpoIVFB-GFP localizes to a region of the sporulating cell known as divides asymmetrically through the formation of a polar septum, the outer forespore membrane, which is distinct from the cyto- which creates a small cell known as the forespore and a larger cell plasmic membrane. Experiments are presented that rule out a called the mother cell. Initially, the forespore and mother cell lie mechanism in which SpoIVFB-GFP localizes to all membranes but is side-by-side, but in the second stage of development the fore- selectively eliminated from the cytoplasmic membrane by proteo- spore is engulfed by the mother cell.
    [Show full text]
  • Plakoglobin Is Required for Effective Intermediate Filament Anchorage to Desmosomes Devrim Acehan1, Christopher Petzold1, Iwona Gumper2, David D
    ORIGINAL ARTICLE Plakoglobin Is Required for Effective Intermediate Filament Anchorage to Desmosomes Devrim Acehan1, Christopher Petzold1, Iwona Gumper2, David D. Sabatini2, Eliane J. Mu¨ller3, Pamela Cowin2,4 and David L. Stokes1,2,5 Desmosomes are adhesive junctions that provide mechanical coupling between cells. Plakoglobin (PG) is a major component of the intracellular plaque that serves to connect transmembrane elements to the cytoskeleton. We have used electron tomography and immunolabeling to investigate the consequences of PG knockout on the molecular architecture of the intracellular plaque in cultured keratinocytes. Although knockout keratinocytes form substantial numbers of desmosome-like junctions and have a relatively normal intercellular distribution of desmosomal cadherins, their cytoplasmic plaques are sparse and anchoring of intermediate filaments is defective. In the knockout, b-catenin appears to substitute for PG in the clustering of cadherins, but is unable to recruit normal levels of plakophilin-1 and desmoplakin to the plaque. By comparing tomograms of wild type and knockout desmosomes, we have assigned particular densities to desmoplakin and described their interaction with intermediate filaments. Desmoplakin molecules are more extended in wild type than knockout desmosomes, as if intermediate filament connections produced tension within the plaque. On the basis of our observations, we propose a particular assembly sequence, beginning with cadherin clustering within the plasma membrane, followed by recruitment of plakophilin and desmoplakin to the plaque, and ending with anchoring of intermediate filaments, which represents the key to adhesive strength. Journal of Investigative Dermatology (2008) 128, 2665–2675; doi:10.1038/jid.2008.141; published online 22 May 2008 INTRODUCTION dense plaque that is further from the membrane and that Desmosomes are large macromolecular complexes that mediates the binding of intermediate filaments.
    [Show full text]
  • Transiently Structured Head Domains Control Intermediate Filament Assembly
    Transiently structured head domains control intermediate filament assembly Xiaoming Zhoua, Yi Lina,1, Masato Katoa,b,c, Eiichiro Morid, Glen Liszczaka, Lillian Sutherlanda, Vasiliy O. Sysoeva, Dylan T. Murraye, Robert Tyckoc, and Steven L. McKnighta,2 aDepartment of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; bInstitute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555 Chiba, Japan; cLaboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520; dDepartment of Future Basic Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan; and eDepartment of Chemistry, University of California, Davis, CA 95616 Contributed by Steven L. McKnight, January 2, 2021 (sent for review October 30, 2020; reviewed by Lynette Cegelski, Tatyana Polenova, and Natasha Snider) Low complexity (LC) head domains 92 and 108 residues in length are, IF head domains might facilitate filament assembly in a manner respectively, required for assembly of neurofilament light (NFL) and analogous to LC domain function by RNA-binding proteins in the desmin intermediate filaments (IFs). As studied in isolation, these IF assembly of RNA granules. head domains interconvert between states of conformational disor- IFs are defined by centrally located α-helical segments 300 to der and labile, β-strand–enriched polymers. Solid-state NMR (ss-NMR) 350 residues in length. These central, α-helical segments are spectroscopic studies of NFL and desmin head domain polymers re- flanked on either end by head and tail domains thought to be veal spectral patterns consistent with structural order.
    [Show full text]
  • Intermediate Filament Accumulation Can Stabilize Microtubules in Caenorhabditis Elegans Motor Neurons
    Intermediate filament accumulation can stabilize microtubules in Caenorhabditis elegans motor neurons Naina Kurupa, Yunbo Lia, Alexandr Goncharova, and Yishi Jina,b,1 aNeurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093; and bDepartment of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Edited by H. Robert Horvitz, Massachusetts Institute of Technology, Cambridge, MA, and approved February 11, 2018 (received for review December 21, 2017) Neural circuits utilize a coordinated cellular machinery to form and Results eliminate synaptic connections, with the neuronal cytoskeleton Identification of IF Genes That Regulate Synapse Rewiring. At the playing a prominent role. During larval development of Caenorhabditis end of larval stage 1 (L1), the dorsal D (DD)-type motor neurons elegans, synapses of motor neurons are stereotypically rewired rewire their presynaptic connections from the ventral nerve cord through a process facilitated by dynamic microtubules (MTs). Through a (VNC) to the dorsal nerve cord (DNC), concurrent with the genetic suppressor screen on mutant animals that fail to rewire synap- birth of ventral D (VD)-type motor neurons, which then form ses, and in combination with live imaging and ultrastructural studies, synapses along the VNC (19). We visualized DD-neuron pre- we find that intermediate filaments (IFs) stabilize MTs to prevent syn- synaptic terminals using a GFP-tagged synaptobrevin (SNB- apse rewiring. Genetic ablation of IFs or pharmacological disruption of 1::GFP) reporter (juIs137:Pflp-13 SNB-1::GFP). In L1 animals, IF networks restores MT growth and rescues synapse rewiring defects discrete synaptic puncta were present along the ventral neurites in the mutant animals, indicating that IF accumulation directly alters MT (18), but in late larvae and adults, synaptic puncta were only seen stability.
    [Show full text]
  • The Relationship Between Intermediate Filaments and Microfilaments Before and During the Formation of Desmosomes and Adherens-Ty
    Published May 1, 1987 The Relationship between Intermediate Filaments and Microfilaments before and during the Formation of Desmosomes and Adherens-type Junctions in Mouse Epidermal Keratinocytes Kathleen J. Green, Benjamin Geiger,* Jonathan C. R. Jones, John C. Talian, and Robert D. Goldman Department of Cell Biology and Anatomy, Northwestern University Medical School, Chicago, Illinois 60611; and * Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot, Israel Abstract. Actin, keratin, vinculin and desmoplakin ermost of the concentric MFB. Individual IF often organization were studied in primary mouse keratino- splay out, becoming interwoven into these MFB in the cytes before and during Ca2+-induced cell contact forma- region of cell-substrate contact. In the first 30 min af- tion. Double-label fluorescence shows that in cells cul- ter the Ca 2+ switch, areas of submembranous dense Downloaded from tured in low Ca 2÷ medium, keratin-containing inter- material (identified as adherens junctions), which are mediate filament bundles (IFB) and desmoplakin- associated with the perpendicular MFB, can be seen at containing spots are both concentrated towards the cell newly formed cell-ceU contact sites. By 1-2 h, IFB- center in a region bounded by a series of concentric desmosomal component complexes are aligned with microfilament bundles (MFB). Within 5-30 min after the perpendicular MFB as the complexes become jcb.rupress.org raising Ca 2+ levels, a discontinuous actin/vinculin-rich, redistributed to cell-cell interfaces. Cytochalasin D submembranous zone of fluorescence appears at cell- treatment causes the redistribution of actin into numer- cell interfaces. This zone is usually associated with ous patches; keratin-containing Lr:B undergo a con- short, perpendicular MFB, which become wider and comitant redistribution, forming foci that coincide with longer with time.
    [Show full text]
  • Bird Eye View of Protein Subcellular Localization Prediction
    life Review Bird Eye View of Protein Subcellular Localization Prediction Ravindra Kumar 1,* and Sandeep Kumar Dhanda 2,* 1 Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Rockville, MD 20850, USA 2 Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA * Correspondence: [email protected] (R.K.); [email protected] (S.K.D.) Received: 24 November 2020; Accepted: 11 December 2020; Published: 14 December 2020 Abstract: Proteins are made up of long chain of amino acids that perform a variety of functions in different organisms. The activity of the proteins is determined by the nucleotide sequence of their genes and by its 3D structure. In addition, it is essential for proteins to be destined to their specific locations or compartments to perform their structure and functions. The challenge of computational prediction of subcellular localization of proteins is addressed in various in silico methods. In this review, we reviewed the progress in this field and offered a bird eye view consisting of a comprehensive listing of tools, types of input features explored, machine learning approaches employed, and evaluation matrices applied. We hope the review will be useful for the researchers working in the field of protein localization predictions. Keywords: protein localization; signal peptide-based method; sequence compositional information-based method; machine learning based method; integrated method 1. Introduction Proteins are localized into different cellular compartments and sub-compartments inside the cell. Each subcellular compartment has a distinct well-defined function in the cell and has a characteristic physicochemical environment, which drives proper functioning of the proteins.
    [Show full text]
  • Subcellular Localization of a Bacterial Regulatory RNA
    Subcellular localization of a bacterial regulatory RNA Jay H. Russell and Kenneth C. Keiler1 The Pennsylvania State University, Department of Biochemistry and Molecular Biology, 401 Althouse Lab, University Park, PA 16802 Edited by Robert T. Sauer, Massachusetts Institute of Technology, Cambridge, MA, and approved July 13, 2009 (received for review May 4, 2009) Eukaryotes and bacteria regulate the activity of some proteins by synchronized cultures of cells in G1 phase, called swarmer cells. localizing them to discrete subcellular structures, and eukaryotes Swarmer cells execute a developmental program that coordi- localize some RNAs for the same purpose. To explore whether nates initiation of DNA replication with morphological differ- bacteria also spatially regulate RNAs, the localization of tmRNA entiation into stalked cells. During differentiation, the polar was determined using fluorescence in situ hybridization. tmRNA is flagellum is ejected and a stalk grows at the same site. Stalked a small regulatory RNA that is ubiquitous in bacteria and that cells complete S phase and divide, producing a stalked cell and interacts with translating ribosomes in a reaction known as trans- a new swarmer cell. trans-Translation is required for correct translation. In Caulobacter crescentus, tmRNA was localized in a timing of events during the developmental program. Cells lack- cell-cycle–dependent manner. In G1-phase cells, tmRNA was found ing ssrA (the gene encoding tmRNA) or smpB do not initiate in regularly spaced foci indicative of a helix-like structure. After DNA replication at the correct time, and all subsequent cell- initiation of DNA replication, most of the tmRNA was degraded, cycle–regulated events are delayed.
    [Show full text]
  • INTERMEDIATE FILAMENT Dr Krishnendu Das Assistant Professor Department of Zoology City College
    INTERMEDIATE FILAMENT Dr Krishnendu Das Assistant Professor Department of Zoology City College Q.What are the intermediate filaments? State their role as cytoskeleton. How its functional significance differs from others? This component of cytoskeleton intermediates between actin filaments (about 7 nm in diameter) and microtubules (about 25 nm in diameter). In contrast to actin filament and microtubule the intermediate filaments are not directly involved in cell movements, instead they appear to play basically a structural role by providing mechanical strength to cells and tissues. (Figure 1: Structure of intermediate filament proteins- intermediate filament proteins contain a central α-helical rod domain of approximately 310 amino acids (350 amino acids in the nuclear lamins). The N-terminal head and C-terminal tail domains vary in size and shape. Q.How intermediate filaments differ from actin filaments and microtubules in respect of their components? Actin filaments and microtubules are polymers of single types of proteins (e.g; actin tubulins), whereas intermediate filaments are composed of a variety of proteins that are expressed in different types of cells (as given in the tabular form) Type Protein Size (kd) Site of expression I Acidic keratin 40-60 Epithelial cells II Neutral or basic keratin 50-70 Do III Vimentin 54 Fibroblasts, WBC and other cell types Desmin 53 Muscle cells Periferin 57 Peripheral neurons IV Neurofilament proteins NF-L 67 Neurons NF-M 150 Neurons NF-H 200 Neurons V Nuclear lamins 60-75 Nuclear lamina of all cell types VI nestin 200 Stem cells, especially of the central nervous system Q.How do intermediate filaments assemble? (Figure 2) The central rod domains of two polypeptides wind around each other in a coiled-coil structure to form dimmers.
    [Show full text]
  • Cytoskeleton Markers
    ptglab.com 1 CYTOSKELETON MARKERS www.ptglab.com Introduction The cytoskeleton is a three-dimensional network supporting and stabilizing the cell. All cells, even bacteria, have a type of cytoskeleton. It is responsible for the shape of the cell and its mechanical properties. Many dynamic cellular processes cooperate with the cytoskeleton, such as cell motion, cell division, intracellular transport, and cell signaling. Therefore, the cytoskeleton interacts with several cytoplasmic proteins or organelles. The cytoskeletal network is composed of three different protein structures named filaments: microtubules, microfilaments (actin), and intermediate filaments. These proteins form their own unique networks within the cell that have different interdependent functions. Main Functions of the Cytoskeleton Structural support Cell trafficking Transducer of mechanical signals Associated with several diseases Cellular signaling Cell Illustrating The Three Different Cytoskeleton Structure Proteins 2 Cytoskeleton Markers Most Popular Antibody Name Catalog Number Type Applications Cytoskeleton Markers ACTA2/alpha 5 23081-1-AP Rabbit Poly ELISA, IHC, IP, WB From Proteintech smooth muscle actin alpha Tubulin 4 11224-1-AP Rabbit Poly ELISA, FC, IF, IHC, IP, WB beta Actin 423 20536-1-AP Rabbit Poly ELISA, IF, IHC, WB beta Actin 399 60008-1-IG Mouse Mono ELISA, FC, IF, IHC, WB beta Tubulin 11 10068-1-AP Rabbit Poly ELISA, IF, IHC, IP, WB Cofilin 5 10960-1-AP Rabbit Poly ELISA, IF, IHC, WB Cytokeratin 17 specific 17516-1-AP Rabbit Poly ELISA, FC, IF, IHC, IP, WB Desmin 2 60226-1-IG Mouse Mono ELISA, IHC, WB GFAP 5 60190-1-IG Mouse Mono ELISA, IF, IHC, IP, WB Palladin 5 10853-1-AP Rabbit Poly ELISA, FC, IF, IHC, IP, WB Vimentin 54 10366-1-AP Rabbit Poly ELISA, FC, IF, IHC, WB 00 This number shows the amount of times our antibody has been cited in a publication.
    [Show full text]
  • Tau Inhibits Vesicle and Organelle Transport
    Journal of Cell Science 112, 2355-2367 (1999) 2355 Printed in Great Britain © The Company of Biologists Limited 1999 JCS9926 Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles B. Trinczek*, A. Ebneth‡, E.-M. Mandelkow and E. Mandelkow* Max-Planck Unit for Structural Molecular Biology, Notkestrasse 85, D-22607 Hamburg, Germany *Authors for correspondence (e-mail: [email protected]; [email protected]) ‡Present address: GENION Forschungsgesellschaft mbH, Abteistrasse 57, 20149 Hamburg, Germany Accepted 30 April; published on WWW 24 June 1999 SUMMARY We have performed a real time analysis of fluorescence- even with that of vimentin intermediate filaments. The net tagged vesicle and mitochondria movement in living CHO effect is a directional bias in the minus-end direction of cells transfected with microtubule-associated protein tau or microtubules which leads to the retraction of mitochondria its microtubule-binding domain. Tau does not alter the or vimentin IFs towards the cell center. The data suggest speed of moving vesicles, but it affects the frequencies of that tau can control intracellular trafficking by affecting attachment and detachment to the microtubule tracks. the attachment and detachment cycle of the motors, in Thus, tau decreases the run lengths both for plus-end and particular by reducing the attachment of kinesin to minus-end directed motion to an equal extent. Reversals microtubules, whereas the movement itself is unaffected. from minus-end to plus-end directed movement of single vesicles are strongly reduced by tau, but reversals in the opposite direction (plus to minus) are not.
    [Show full text]