Induction of Genotoxic and Cytotoxic Damage by Aclarubicin, a Dual Topoisomerase Inhibitor N

Total Page:16

File Type:pdf, Size:1020Kb

Induction of Genotoxic and Cytotoxic Damage by Aclarubicin, a Dual Topoisomerase Inhibitor N Mutation Research 583 (2005) 26–35 Induction of genotoxic and cytotoxic damage by aclarubicin, a dual topoisomerase inhibitor N. Hajji, S. Mateos, N. Pastor, I. Dom´ınguez, F. Cortes´ ∗ Department of Cell Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes No. 6, 41012 Seville, Spain Received 19 May 2004; received in revised form 11 September 2004; accepted 21 January 2005 Available online 11 March 2005 Abstract The anthracycline aclarubicin (ACLA) is an intercalative antibiotic and antineoplastic agent that efficiently binds to DNA, leading to a secondary inhibition of the catalytic activity of topoisomerase II (topo II) on DNA. Besides this activity, ACLA has been reported to exert a concomitant poisoning effect on topo I, in a fashion similar to that of the antitumor drug camptothecin and its derivatives. As a consequence of this dual (topo II catalytic inhibiting/topo I poisoning) activity of ACLA, the picture is somewhat confusing with regards to DNA damage and cytotoxicity. We studied the capacity of ACLA to induce catalytic inhibition of topo II as well as cytotoxic effects and DNA damage in cultured Chinese hamster V79 cells and their radiosensitive counterparts irs-2. The ultimate purpose was to find out whether differences could be observed between the two cell lines in their response to ACLA, as has been widely reported for radiosensitive cells treated with topo poisons. Our results seem to agree with the view that the radiosensitive irs-2 cells appear as hypersensitive ACLA as compared with radiation repair-proficient V79 cells. The recovery after ACLA treatment was also followed-up, and the irs-2 mutant was found to be less proficient than V79 to repair DNA strand breaks induced by ACLA. © 2005 Elsevier B.V. All rights reserved. Keywords: Aclarubicin; Topoisomerase II; Topoisomerase I; Cytotoxicity; DNA damage 1. Introduction II catalytic inhibitors. While topo II poisons are well known for their ability to efficiently induce DNA strand Topoisomerase II (topo II)-targeting drugs are clas- breaks [1], catalytic inhibitors generally act at stages sified into either topo II poisons, which play a role in in the catalytic cycle of the enzyme where both DNA stabilizing the otherwise fleeting enzyme-DNA inter- strands are intact and, therefore by definition they are mediates, the so-called ‘cleavable complexes’, or topo not expected to cause any DNA breakage [2]. While topo II poisons have been thoroughly studied for their mechanism(s) of interference with topo II – some of the ∗ Corresponding author. Tel.: +34 95 4557039; fax: +34 95 4610261. more potent and widely used anticancer drugs belong E-mail address: [email protected] (F. Cortes).´ to this category – much less is known about catalytic 1383-5718/$ – see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.mrgentox.2005.01.012 N. Hajji et al. / Mutation Research 583 (2005) 26–35 27 inhibitors and their relationship with topo II, or with re- ACLA in two cultured Chinese hamster lung fibroblast spect to their clinical use [3]. Nonetheless, aclarubicin cell lines, namely the parental line V79, which repairs (ACLA) represents an exception in that it is a topo II DNA radiation damage normally, and its radiosensitive catalytic inhibitor that has been successfully used in mutant irs-2 [21], to see whether the effects of ACLA clinical oncology practice. This intercalative antibiotic are different between these two cell lines. belongs to the class of anthracyclines, and efficiently binds to DNA, which in turn results in an inhibition of topo II to access the DNA [4–6], i.e. ACLA is a DNA 2. Materials and methods intercalator that indirectly interferes with topo II. On the other hand, besides its role as a topo II catalytic in- 2.1. Cells and culture conditions hibitor, an interesting feature of ACLA is its reported concomitant action as a topo I poison through stabi- The parental lung fibroblast Chinese hamster cell lization of the topo I-DNA cleavable complex [7–10]. line V79 was purchased from the American Type This dual mechanism of action of this antibiotic, Culture Collection (ATCC), USA. The radiosensi- involving both topo II (catalytic inhibition) and topo tive mutant irs-2 was kindly provided by Dr. John I (poisoning) makes this drug an interesting choice Thacker (Medical Research Council, Harwell, UK). for the assessment of the relative importance of ei- Cells were routinely maintained as monolayer in Min- ther enzyme in DNA function and of the deleteri- imum Essential Medium (Gibco BRL) supplemented ous consequences of topoisomerase dysfunction as a with 10% fetal bovine serum, 2 mM l-glutamine, and whole. Besides, the dual topo I poisoning-topo II cat- the antibiotics penicillin (50 units/ml) and strepto- alytic inhibition exerted by ACLA contrasts with that mycin (50 ␮g/ml). Cells were cultured in a dark en- of other agents acting in a dual fashion, with either vironment at 37 ◦C in an atmosphere containing 5% a poison–poison [7,11–13] or catalytic–catalytic [10] CO2. On regular testing, cell cultures were found to be anti-DNA topoisomerase mechanism. free from mycoplasma. The early notion that catalytic inhibitors of topo II do not induce DNA breaks through stabilization of the 2.2. Cell viability cleavable complex [2,14], because they interfere with the cycle of the enzyme when both DNA strands are 2.2.1. Sulforhodamine B (SRB) assay intact, has been challenged recently. Reports on e.g., V79 and irs-2 cells in the exponential growth phase the bis-dioxopiperazine ICRF-193 described the in- were harvested using trypsin-EDTA (Gibco BRL), duction of chromosomal aberrations [15,16] as well and resuspended in medium. They were seeded at as DNA strand breaks [17–19], raising questions as to 5 × 103 cells/100 ␮l in 96-well microtitre plates (Nunc) the existence of ‘clean’ catalytic inhibitors of topo II and allowed 24 h to attach. Then they were incubated that act on the enzyme without concomitantly inducing further for 48 h in the presence of the DNA topo II in- DNA damage, either directly or indirectly. Focusing on hibitor ACLA. The concentration range tested (0.006 to ACLA, even though studies on this intercalative antibi- 0.37 ␮M) was prepared in tissue culture medium from otic are scarce, its ability to induce DNA damage in two a 1 mM ACLA stock solution. human myeloid cell lines has been measured by use of Following the recommendations of the National the comet assay and reported to correlate with the in- Cancer Institute (USA), the analysis of cytotoxic ef- duction of apoptosis [6]. fects induced by ACLA was conducted by use of a cell The sensitivity of radiosensitive mammalian cell growth test, the SRB assay, as described previously lines to topoisomerase poisons was shown to be sim- [24,25]. Briefly, 50 ␮l/well of cold 50% trichloroacetic ilar to that observed in response to radiation damage acid (TCA) (final concentration 10%) was added to [20–23]. In the case of ACLA, however, taking into ac- the culture and incubated at 4 ◦C for 1 h, to precipi- count the dual nature of this drug as topo II catalytic tate proteins and to fix the cells. The supernatant was inhibitor as well as topo I poison, the picture that arises then discarded, and the plates were washed five times is somewhat confusing. In the present report, we have with deionized water and air-dried. The cells were then evaluated the cytotoxic and/or genotoxic activity of stained with 100 ␮l/well of 0.4% SRB dissolved in 1% 28 N. Hajji et al. / Mutation Research 583 (2005) 26–35 acetic acid for 30 min at room temperature. Unbound were obtained by centrifugation at 2000 rpm (Eppen- SRB was removed by washing five times with 1% acetic dorf centrifuge), for 5 min at 4 ◦C. Nuclei were then acid, and then the plates were air-dried. The stained washed in 1 ml of nucleus wash buffer (5 mM potas- protein was solubilized in 100 ␮l/well of 10 mM un- sium phosphate buffer, pH 7.5, 1 mM phenylmethyl buffered Tris base by shaking. The optical density was sulfonyl fluoride (PMSF), 1 mM ␤-mercaptoethanol, read at 492 nm using a microtitre plate reader (ELISA). and 0.5 mM dithiothreitol (DTT)). The nuclei were then Similarly, cells from both lines were treated with dif- pelleted as described above and resuspended in 50 ␮l ferent doses (0.005–2.5 ␮M) of the bisdioxopiperazine of nucleus wash buffer, and 50 ␮l of 4 mM EDTA was ICRF-193 in order to assess the relative importance for added. Following incubation at 0 ◦C for 15 min, the nu- cytotoxicity of inhibition of topo II catalytic activity clei were lysed by adding 100 ␮l of 2 M NaCl, 20 mM compared with poisoning of topo I. Each type of ex- Tris–HCl pH 7.5, 10 mM ␤-mercaptoethanol, 1 mM periment was independently performed in triplicate. PMSF. Following a 15 min incubation at 0 ◦C, 50 ␮l of 18% polyethylene glycol (PEG-6000) in 1 M NaCl, 2.2.2. Clonogenic assay 50 mM Tris–HCl pH 7.5, 10 mM ␤-mercaptoethanol, V79 and irs-2 cells in the exponential growth phase and 1 mM PMSF were added. The suspension was in- were trypsinized at 37 ◦C for 5 min, and pipetted five cubated for a further 40 min period at 0 ◦C. Then the times to remove cell clumps in order to obtain a single- supernatant from a 30 min centrifugation at 12,500 rpm cell suspension. The cells were then counted and seeded at 4 ◦C was collected.
Recommended publications
  • Selective DNA-Pkcs Inhibition Extends the Therapeutic Index of Localized Radiotherapy and Chemotherapy
    Selective DNA-PKcs inhibition extends the therapeutic index of localized radiotherapy and chemotherapy Catherine E. Willoughby, … , Anderson J. Ryan, Stephen R. Wedge J Clin Invest. 2019. https://doi.org/10.1172/JCI127483. Research Article Oncology Therapeutics Graphical abstract Find the latest version: https://jci.me/127483/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Selective DNA-PKcs inhibition extends the therapeutic index of localized radiotherapy and chemotherapy Catherine E. Willoughby,1 Yanyan Jiang,2 Huw D. Thomas,1 Elaine Willmore,1 Suzanne Kyle,1 Anita Wittner,1 Nicole Phillips,1 Yan Zhao,1 Susan J. Tudhope,1 Lisa Prendergast,1 Gesa Junge,1 Luiza Madia Lourenco,2 M. Raymond V. Finlay,3 Paul Turner,3 Joanne M. Munck,4 Roger J. Griffin,5 Tommy Rennison,5 James Pickles,5 Celine Cano,5 David R. Newell,1 Helen L. Reeves,1,6 Anderson J. Ryan,2 and Stephen R. Wedge1 1Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom. 2Cancer Research UK and UK Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom. 3Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom. 4Astex Pharmaceuticals, Cambridge, United Kingdom. 5Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom. 6Hepatopancreatobiliary Multidisciplinary Team, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom. Potentiating radiotherapy and chemotherapy by inhibiting DNA damage repair is proposed as a therapeutic strategy to improve outcomes for patients with solid tumors.
    [Show full text]
  • Anti-Neoplastic Effects of Topoisomerase Inhibitors in Canine Mammary Carcinoma, Melanoma, and Osteosarcoma Cell Title Lines
    Anti-neoplastic effects of topoisomerase inhibitors in canine mammary carcinoma, melanoma, and osteosarcoma cell Title lines Ong, Siew Mei; Yamamoto, Hiroki; Saeki, Kohei; Tanaka, Yuiko; Yoshitake, Ryohei; Nishimura, Ryohei; Nakagawa, Author(s) Takayuki Citation Japanese Journal of Veterinary Research, 65(1), 17-28 Issue Date 2017-02 DOI 10.14943/jjvr.65.1.17 Doc URL http://hdl.handle.net/2115/64788 Type bulletin (article) File Information 65-1_017-028.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Japanese Journal of Veterinary Research 65(1): 17-28, 2017 REGULAR PAPER Experimental Research Anti-neoplastic effects of topoisomerase inhibitors in canine mammary carcinoma, melanoma, and osteosarcoma cell lines Siew Mei Ong1,†), Hiroki Yamamoto1,†), Kohei Saeki1), Yuiko Tanaka1), Ryohei Yoshitake1), Ryohei Nishimura1) and Takayuki Nakagawa1,*) 1) Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan Received for publication, November 29, 2016; accepted, December 27, 2016 Abstract Numerous topoisomerase inhibitors with proven efficacy have been used extensively to treat various human neoplasms. However, among these, only doxorubicin has been used and studied extensively in veterinary oncology. The current study was performed to evaluate the responsiveness of canine osteosarcoma (cOSA), mammary gland tumour (cMGT), and malignant melanoma (cMM) cell lines to several topoisomerase inhibitors. In addition, the correlation between the sensitivity to treatment and multi-drug resistant (MDR) factors was investigated. cOSA cell lines exhibited higher sensitivity than cMGT and cMM cell lines to all the topoisomerase inhibitors tested in vitro; this was associated with the levels of multi-drug resistance protein 1 (MDR1) gene expression in the cOSA cell lines.
    [Show full text]
  • CLINICAL and PHARMACOLOGICAL STUDIES on the TOPOISOMERASE I INHIBITOR TOPOTECAN Cover Design: G.L.M
    CLINICAL AND PHARMACOLOGICAL STUDIES ON THE TOPOISOMERASE I INHIBITOR TOPOTECAN Cover design: G.L.M. Obbens Lay-out: A.A.C. Treuren-den Braber Printed by: Copynomie Erasmus Multicopy Facility Management B.V. Burg. Oudlaan 50 3062 PA Rotterdam The Netherlands phone: 010-4082898 fax: 010-4528183 ISBN: 9090091718 Copyright: G.J. Creemers. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanically, by photocopying, by recording or otherwise without the prior permission of the author. Clinical and pharmacological studies on the topoisomerase I inhibitor topotecan Klinisch en farmacologisch onderzoek met de topoisomerase I rammer topotecan. PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof. dr. P.W.C. Akkermans M.A. en volgens besluit van het college voor promoties. De open bare verdediging zal plaatsvinden op woensdag 13 maart 1996 om 13.45 uur door Gerardus Johannes Marie Creemers geboren te Eindhoven PROMOTIECOMMISSIE Promotor: Prof. dr. G. Stoter Copromotor: Dr. J. Verweij Overige leden: Prof. dr. D.O. Von Hoff Prof. dr. J.H. Beijnen Prof. dr. J.W. Oosterhuis Prof. dr. A. Hagenbeek "Aileen wat niet ophoudt pijn te doen, blijft in de herinnering" Contents Chapter 1 Introduction to the thesis. 1 Chapter 2 Review: The topoisomerase I inhibitors topotecan and irinotecan. 5 Cancer Treatment Reviews 1994: 20; 73·96. Chapter 3 Topotecan in colorectal cancer: A phase II study of the EORTe clinical trials group. 47 Annals of oncology 1995: 6; 844·846.
    [Show full text]
  • Differential Effects of the Poly (ADP-Ribose)Polymerase (PARP
    British Journal of Cancer (2001) 84(1), 106–112 © 2001 Cancer Research Campaign doi: 10.1054/ bjoc.2000.1555, available online at http://www.idealibrary.com on http://www.bjcancer.com Differential effects of the poly (ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity in L1210 cells in vitro KJ Bowman*, DR Newell, AH Calvert and NJ Curtin Cancer Research Unit, University of Newcastle upon Tyne Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK Summary The potent novel poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025, enhances the cytotoxicity of DNA-methylating agents and ionizing radiation by inhibiting DNA repair. We report here an investigation of the role of PARP in the cellular responses to inhibitors of topoisomerase I and II using NU1025. The cytotoxicity of the topoisomerase I inhibitor, camptothecin, was increased 2.6-fold in L1210 cells by co-incubation with NU1025. Camptothecin-induced DNA strand breaks were also increased 2.5-fold by NU1025 and exposure to camptothecin-activated PARP. In contrast, NU1025 did not increase the DNA strand breakage or cytotoxicity caused by the topoisomerase II inhibitor etoposide. Exposure to etoposide did not activate PARP even at concentrations that caused significant levels of apoptosis. Taken together, these data suggest that potentiation of camptothecin cytotoxicity by NU1025 is a direct result of increased DNA strand breakage, and that activation of PARP by camptothecin-induced DNA damage contributes to its repair and consequently cell survival. However, in L1210 cells at least, it would appear that PARP is not involved in the cellular response to etoposide-mediated DNA damage.
    [Show full text]
  • Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance
    cells Review Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance Ronay Cetin 1,† , Eva Quandt 2,† and Manuel Kaulich 1,3,4,* 1 Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany; [email protected] 2 Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain; [email protected] 3 Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany 4 Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany * Correspondence: [email protected]; Tel.: +49-(0)-69-6301-5450 † These authors contributed equally to this work. Abstract: Drug resistance is a commonly unavoidable consequence of cancer treatment that results in therapy failure and disease relapse. Intrinsic (pre-existing) or acquired resistance mechanisms can be drug-specific or be applicable to multiple drugs, resulting in multidrug resistance. The presence of drug resistance is, however, tightly coupled to changes in cellular homeostasis, which can lead to resistance-coupled vulnerabilities. Unbiased gene perturbations through RNAi and CRISPR technologies are invaluable tools to establish genotype-to-phenotype relationships at the genome scale. Moreover, their application to cancer cell lines can uncover new vulnerabilities that are associated with resistance mechanisms. Here, we discuss targeted and unbiased RNAi and CRISPR efforts in the discovery of drug resistance mechanisms by focusing on first-in-line chemotherapy and their enforced vulnerabilities, and we present a view forward on which measures should be taken to accelerate their clinical translation. Citation: Cetin, R.; Quandt, E.; Kaulich, M. Functional Genomics Keywords: chemotherapy resistance; cancer and drug vulnerabilities; functional genomics; RNAi Approaches to Elucidate Vulnerabilities of Intrinsic and and CRISPR screens Acquired Chemotherapy Resistance.
    [Show full text]
  • As New Horizons in Antifungal Treatment
    molecules Review ‘Acridines’ as New Horizons in Antifungal Treatment Iwona Gabriel Department of Pharmaceutical Technology and Biochemistry, Gda´nskUniversity of Technology, 80-233 Gda´nsk, Poland; [email protected]; Tel.: +48-58-3486-078; Fax: +48-58-3471-144 Received: 18 February 2020; Accepted: 23 March 2020; Published: 25 March 2020 Abstract: Frequent fungal infections in immunocompromised patients and mortality due to invasive mycosis are important clinical problems. Opportunistic pathogenic Candida species remain one of the leading causes of systemic mycosis worldwide. The repertoire of antifungal chemotherapeutic agents is very limited. Although new antifungal drugs such as lanosterol 14α-demethylase and β-glucan synthase inhibitors have been introduced into clinical practice, the development of multidrug resistance has become increasingly significant. The urgency to expand the range of therapeutic options for the treatment of fungal infections has led researchers in recent decades to seek alternative antifungal targets to the conventional ones currently used. Among them, many compounds containing an acridine scaffold have been synthesized and tested. In this review, the applicability of acridines and their functional analogues acridones as antifungal agents is described. Acridine derivatives usage in photoantifungal chemotherapy, interactions with fungal transporters resulting in modulation of efflux/influx pumps and the effect of acridine derivatives on fungal topoisomerases are discussed. This article explores new perspectives
    [Show full text]
  • Potentiation of Topoisomerase Inhibitor-Induced DNA Strand Breakage and Cytotoxicity by Tumor Necrosis Factor: Enhancement of To
    [CANCER RESEARCH 50. 2636-2640, May I. 1990] Potentiation of Topoisomerase Inhibitor-induced DNA Strand Breakage and Cytotoxicity by Tumor Necrosis Factor: Enhancement of Topoisomerase Activity as a Mechanism of Potentiation Teruhiro Utsugi, Michael R. Mattern, Christopher K. Mirabelli, and Nabil Hanna1 Departments of Immunology [T. I'., ,V. H.¡and Molecular Pharmacology [M. R. M., C. K. M.¡,Smith Kline & French Laboratories, King of Prussia, Pennsylvania 19406- 0939 ABSTRACT onstrated that treatment of target cells with topoisomerase I or II inhibitors enhanced their killing by natural cytotoxic cell- A combination of tumor necrosis factor (INI) and the topoisomerase mediated cytotoxicity (8). I inhibitor, camptothecin, or the topoisomerase II inhibitors, teniposide and amsacrine, produced dose-dependent synergistic cytotoxicity against Topoisomerases are nuclear enzymes which catalyze the for the murine L929 fibrosarcoma cells. Similar synergy was not observed mation of various topological isomers of DNA by transiently breaking and rejoining DNA (9-12). Topoisomerase I catalyzes with a combination of TNF and bleomycin. To define the role of TNF in the augmentation of tumor cell killing by topoisomerase I or II inhibitors, single strand breakage and strand passage independent of ATP, the effect of TNF on the production of enzyme-linked DNA strand breaks whereas topoisomerase II catalyzes double strand DNA break induced in cells by topoisomerase inhibitors was investigated. L929 cells age and strand passage in the presence of ATP. Topoisomerase incubated for l h with the topoisomerase inhibitors contained protein- inhibitors are believed to induce cytotoxicity by stabilizing linked strand breaks. In contrast, INI alone did not induce DNA strand covalent complexes of enzyme and strand-cleaved DNA, which breakage.
    [Show full text]
  • Topoisomerase II
    Topoisomerase II-␣ Expression in Different Cell Cycle Phases in Fresh Human Breast Carcinomas Kenneth Villman, M.D., Elisabeth Ståhl, M.S., Göran Liljegren, M.D., Ph.D., Ulf Tidefelt, M.D., Ph.D., Mats G. Karlsson, M.D., Ph.D. Departments of Oncology (KV), Pathology (ES, MGK), Surgery (GL), and Medicine (UT), Örebro University Hospital, Örebro, Sweden; and Karolinska Institute (UT), Stockholm, Sweden cluded in most adjuvant chemotherapy regimens Topoisomerase II-␣ (topo II␣) is the key target en- for breast cancer. Anthracyclines belong to the an- zyme for the topoisomerase inhibitor class of anti- ticancer agents called topoisomerase (topo) II cancer drugs. In normal cells, topo II␣ is expressed inhibitors. predominantly in the S/G2/M phase of the cell cycle. Topoisomerases are enzymes, present in the nu- In malignant cells, in vitro studies have indicated clei in mammalian cells, that regulate topological that the expression of topo II␣ is both higher and changes in DNA that are vital for many cellular less dependent on proliferation state in the cell. We processes such as replication and transcription (5). studied fresh specimens from 50 cases of primary They perform their function by introducing tran- breast cancer. The expression of topo II␣ in differ- sient protein-bridged DNA breaks on one (topo- ent cell cycle phases was analyzed with two- isomerase I) or both DNA strands (topoisomerase parameter flow cytometry using the monoclonal II; 6). There are two isoenzymes of topoisomerase antibody SWT3D1 and propidium iodide staining. II, with genetically and biochemical distinct fea- ␣ The expression of topo II was significantly higher tures.
    [Show full text]
  • DNA-PK Inhibition by NU7441 Enhances Chemosensitivity to Topoisomerase Inhibitor in Non-Small Cell Lung Carcinoma Cells by Blocking DNA Damage Repair
    Yonago Acta Medica 2017;60:09–15 Original Article DNA-PK Inhibition by NU7441 Enhances Chemosensitivity to Topoisomerase Inhibitor in Non-Small Cell Lung Carcinoma Cells by Blocking DNA Damage Repair Masaaki Yanai, Haruhiko Makino, Bingqiong Ping, Kenichi Takeda, Natsumi Tanaka, Tomohiro Sakamoto, Kosuke Yamaguchi, Masahiro Kodani, Akira Yamasaki, Tadashi Igishi and Eiji Shimizu Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tot- tori University Faculty of Medicine, Yonago 683-8504, Japan ABSTRACT cause of cancer-related death worldwide. Over half of Background DNA double-strand breaks (DSBs) are patients with NSCLC have been advanced or metastatic the most cytotoxic form of DNA damage and are in- lesions at the time of diagnosis.1 Systemic chemotherapy duced by ionizing radiation and specific chemotherapeu- is the standard treatment for patients with advanced NS- tic agents, such as topoisomerase inhibitors. Cancer cells CLC. In many countries, including Japan, cytotoxic che- acquire resistance to such therapies by repairing DNA motherapeutic agents are used as the first-line treatment DSBs. A major pathway for the repair of DNA DSBs is for advanced NSCLC patients. However, these cytotoxic non-homologous end-joining (NHEJ), which requires chemotherapies have reached a therapeutic plateau and DNA-dependent protein kinase (DNA-PK) activity. In have limited survival benefits for advanced NSCLC pa- this study, we investigated the effect of NU7441, a syn- tients. In recent years, treatment with targeted agents has thetic small-molecule compound, as a specific inhibitor markedly improved progression-free and overall survival of DNA-PK on the chemosensitization of non-small cell in patients with advanced NSCLC harboring EGFR mu- lung carcinoma (NSCLC) A549 cells.
    [Show full text]
  • In Vitro Synergistic Effects of Anthracycline Antitumor Agents And
    evelo f D pin l o g a D Matsumoto et al., J Develop Drugs 2014, 3:2 n r r u u g o s J Journal of Developing Drugs DOI: 10.4172/2329-6631.1000125 ISSN: 2329-6631 Research Article Open Access In vitro Synergistic Effects of Anthracycline Antitumor Agents and Fluconazole Against Azole-Resistant Candida albicans Clinical Isolates Matsumoto S, Kurakado S, Shiokama T, Ando Y, Aoki N, Cho O and Sugita T* Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo Japan Abstract The number of azole-resistant Candida albicans clinical isolates is increasing. This study searched for compounds that are functionally synergistic with fluconazole against azole-resistant C. albicans strains. Synergistic effects were evaluated using the checkerboard method in a time-kill study using anthracycline antitumor agents and azole-resistant C. albicans strains. Of the five anthracycline agents examined, aclarubicin by itself had antifungal effects, whereas daunorubicin, doxorubicin, epirubicin, and idarubicin did not show antifungal effects alone, but did exert dose- and time- dependent synergistic effects with fluconazole against the C. albicans strains. No antitumor agent other than anthracycline exhibited an anti-Candida effect. Anthracycline compounds may therefore be useful as seeds for development of new antifungal agents. Keywords: Anthracycline; antitumor agent; azole-resistant Candida Materials and Methods albicans; synergy Strains used Introduction Twelve azole-resistant Candida albicans strains obtained from Candida albicans is the most frequently observed opportunistic patients’ blood were examined in this study. All strains were cultured fungal pathogen and causes deep-seated fungal infection, mainly on Sabouraud dextrose agar (SDA) plates at 37°C.
    [Show full text]
  • The Dual Topoisomerase Inhibitor A35 Preferentially and Specially Targets Topoisomerase 2A by Enhancing Pre-Strand and Post-Stra
    www.impactjournals.com/oncotarget/ Oncotarget, Advance Publications 2015 The dual topoisomerase inhibitor A35 preferentially and specially targets topoisomerase 2a by enhancing pre-strand and post-strand cleavage and inhibiting DNA religation Wuli Zhao1,*, Guohua Jiang2,*, Chongwen Bi1, Yangbiao Li1, Jingbo Liu3, Cheng Ye1, Hongwei He1, Liang Li1, Danqing Song1,*, Rongguang Shao1,* 1 Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China 2Analysis and Testing Center, Beijing Normal University, Beijing, China 3China Meitan General Hospital, Beijing, China *These authors have contributed equally to this work Correspondence to: Rongguang Shao, e-mail: [email protected] Keywords: dual topoisomerase inhibitor, topoisomerase2a, cardiotoxicity, DNA religation, enhancing strand cleavage Received: May 24, 2015 Accepted: September 25, 2015 Published: October 07, 2015 ABSTRACT DNA topoisomerases play a key role in tumor proliferation. Chemotherapeutics targeting topoisomerases have been widely used in clinical oncology, but resistance and side effects, particularly cardiotoxicity, usually limit their application. Clinical data show that a decrease in topoisomerase (top) levels is the primary factor responsible for resistance, but in cells there is compensatory effect between the levels of top1 and top2a. Here, we validated cyclizing-berberine A35, which is a dual top inhibitor and preferentially targets top2a. The impact on the top2a catalytic cycle indicated that A35 could intercalate into DNA but did not interfere with DNA-top binding and top2a ATPase activity. A35 could facilitate DNA-top2a cleavage complex formation by enhancing pre-strand and post-strand cleavage and inhibiting religation, suggesting this compound can be a topoisomerase poison and had a district mechanism from other topoisomerase inhibitors.
    [Show full text]
  • Relationship Between Topoisomerase II-DNA Cleavable Complexes, Apoptosis and Cytotoxic Activity of Anthracyclines in Human Cervix Carcinoma Cells
    ANTICANCER RESEARCH 25: 2193-2198 (2005) Relationship between Topoisomerase II-DNA Cleavable Complexes, Apoptosis and Cytotoxic Activity of Anthracyclines in Human Cervix Carcinoma Cells BEATA M. GRUBER1, ELZBIETA L. ANUSZEWSKA1, IRENA BUBKO1, ANETA GOZDZIK1, WALDEMAR PRIEBE2 and IZABELA FOKT2 1National Institute of Public Health, Department of Biochemistry and Biopharmaceuticals, Chelmska 30/34 Str., 00-725 Warsaw, Poland; 2The University of Texas, M. D. Anderson Cancer Center, Department of Bioimmunotherapy, 1515 Holcombe Blvd., Houston, TX 77030, U.S.A. Abstract. The use of anthracyclines as antitumor drugs dates determinant in the cytotoxic action of these compounds. The back to the 1970s, but the mechanism of the cytotoxicity of efficiency of anthracycline antibiotics, interpreted as cytotoxic these compounds has long been a matter of debate. There is action, was dependent on cell type. increasing evidence indicating that drug-induced cytotoxicity commonly converges on the induction of apoptosis. Many Anthracyclines are potent, broad-spectrum chemotherapeutic authors point to the fact that double-strand breaks, resulting agents, effective against solid tumors and malignant from stabilization of cleavable complexes, are the signal for the hematological disease (1, 2). initiation of the apoptotic cascade. In this work, the possible Although the initial intracellular targets of this group of correlation between stabilization of topoisomerase II (topoII)- anticancer drugs may be heterogenous, there is increasing DNA complexes, apoptosis
    [Show full text]