Ocean Sci., 16, 135–148, 2020 https://doi.org/10.5194/os-16-135-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Photoproduction of nitric oxide in seawater Ye Tian1,2,3, Gui-Peng Yang1,2,3, Chun-Ying Liu1,2,3, Pei-Feng Li3, Hong-Tao Chen1,2,3, and Hermann W. Bange4 1Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100, China 2Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China 3College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China 4Chemical Oceanography, Division of Marine Biogeochemistry, GEOMAR – Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel 24105, Germany Correspondence: Chun-Ying Liu (
[email protected]) and Hong-Tao Chen (
[email protected]) Received: 25 May 2019 – Discussion started: 11 June 2019 Revised: 5 December 2019 – Accepted: 13 December 2019 – Published: 23 January 2020 Abstract. Nitric oxide (NO) is a short-lived intermediate of nation method so far because of its high reactivity with other the oceanic nitrogen cycle. However, our knowledge about substances (Zafiriou et al., 1980; Lutterbeck and Bange, its production and consumption pathways in oceanic environ- 2015; Liu et al., 2017). NO is produced and consumed during ments is rudimentary. In order to decipher the major factors various microbial processes such as nitrification, denitrifica- affecting NO photochemical production, we irradiated sev- tion, and anammox (Schreiber et al., 2012; Kuypers et al., eral artificial seawater samples as well as 31 natural surface 2018).