Temporal Network Embedding with Micro- and Macro-Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Temporal Network Embedding with Micro- and Macro-Dynamics Temporal Network Embedding with Micro- and Macro-dynamics Yuanfu Lu Xiao Wang Chuan Shi∗ Beijing University of Posts and Beijing University of Posts and Beijing University of Posts and Communications Communications Communications Beijing, China Beijing, China Beijing, China [email protected] [email protected] [email protected] Philip S. Yu Yanfang Ye University of Illinois at Chicago Case Western Reserve University IL, USA OH, USA [email protected] [email protected] ABSTRACT ACM Reference Format: Network embedding aims to embed nodes into a low-dimensional Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, and Yanfang Ye. 2019. Tem- space, while capturing the network structures and properties. Al- poral Network Embedding with Micro- and Macro-dynamics. In The 28th ACM International Conference on Information and Knowledge Management though quite a few promising network embedding methods have (CIKM ’19), November 3–7, 2019, Beijing, China. ACM, New York, NY, USA, been proposed, most of them focus on static networks. In fact, 10 pages. https://doi.org/10.1145/3357384.3357943 temporal networks, which usually evolve over time in terms of microscopic and macroscopic dynamics, are ubiquitous. The micro- 1 INTRODUCTION dynamics describe the formation process of network structures in a detailed manner, while the macro-dynamics refer to the evolution Network embedding has shed a light on network analysis due pattern of the network scale. Both micro- and macro-dynamics to its capability of encoding the structures and properties of net- are the key factors to network evolution; however, how to ele- works with latent representations [1, 3]. Though the state-of-the- gantly capture both of them for temporal network embedding, arts [5, 9, 21, 22, 25, 28] have achieved promising performance in especially macro-dynamics, has not yet been well studied. In this many data mining tasks, most of them focus on static networks with paper, we propose a novel temporal network embedding method fixed structures. In reality, the network usually exhibits complex with micro- and macro-dynamics, named M2DNE. Specifically, for temporal properties, meaning that the network structures are not micro-dynamics, we regard the establishments of edges as the oc- achieved overnight and usually evolve over time. In the so-called currences of chronological events and propose a temporal attention temporal networks [13], the establishments of edges between nodes point process to capture the formation process of network struc- are chronological and the network scale grows with some obvious tures in a fine-grained manner. For macro-dynamics, we define a distribution. For example, researchers collaborate with others in dif- general dynamics equation parameterized with network embed- ferent years, leading to sequential co-author events and continued dings to capture the inherent evolution pattern and impose con- growth of the network scale. Therefore, a temporal network natu- straints in a higher structural level on network embeddings. Mutual rally represents the evolution of a network, including not only the evolutions of micro- and macro-dynamics in a temporal network al- fine-grained network structure but also the macroscopic network ternately affect the process of learning node embeddings. Extensive scale. Embedding a temporal network with the latent representation experiments on three real-world temporal networks demonstrate space is of great importance for applications in practice. that M2DNE significantly outperforms the state-of-the-arts not Basically, one requirement for temporal network embedding is only in traditional tasks, e.g., network reconstruction, but also in that the learned embeddings should preserve the network structure temporal tendency-related tasks, e.g., scale prediction. and reflect its temporal evolution. The temporal network evolution usually follows two dynamics processes, i.e., the microscopic and arXiv:1909.04246v1 [cs.LG] 10 Sep 2019 KEYWORDS macroscopic dynamics. At the microscopic level, the temporal net- work structure is driven by the establishments of edges, which is Network Embedding, Temporal Network, Social Dynamics Analysis, actually a sequence of chronological events involving two nodes. Temporal Point Process Taking Figure 1 as an example, from time ti to tj , the formation ∗Corresponding author. of the structure can be described as f¹v ;v ; t º, ¹v ;v ; t º, · · · g ::: 3 1 i 3 2 i −−!f¹v3;v1; tj º; ¹v3;v4; tj º; · · · g, and here nodes v3 and v1 build a Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed link again at tj . Usually, an edge generated at time t is inevitably for profit or commercial advantage and that copies bear this notice and the full citation related with the historical neighbors before t, and the influence on the first page. Copyrights for components of this work owned by others than ACM of the neighbor structures on the edge formation comes from the must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a two-way nodes, not just a single one. Besides, different neighbor- fee. Request permissions from [email protected]. hoods may have distinct influences. For example, in Figure 1,the CIKM ’19, November 3–7, 2019, Beijing, China establishment of edge ¹v3;v4º at time tj should be influenced by © 2019 Association for Computing Machinery. ACM ISBN 978-1-4503-6976-3/19/11...$15.00 {¹v3;v1; ti º, ¹v3;v2; ti º; · · · g and f¹v4;v2; ti º; · · · g. Besides, the influ- https://doi.org/10.1145/3357384.3357943 ences of ¹v3;v2; ti º and ¹v4;v2; ti º on the event ¹v3;v4; tj º should CIKM ’19, November 3–7, 2019, Beijing, China Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, and Yanfang Ye Number of edges in a temporal network (i.e., micro-dynamics), we elaborately de- sign a temporal attention point process by parameterizing the condi- tional intensity function with node embeddings, which captures the fine-grained structural and temporal properties with a hierarchical temporal attention. To model the evolution pattern of the temporal network scale (i.e., macro-dynamics), we define a general dynamics 5 equation as a non-linear function of the network embedding, which 1 1 2 … 2 … … … imposes constraints on the network embedding at a high structural 3 4 3 4 level and well couples the dynamics analysis with representation Time learning on temporal networks. At last, we combine micro- and … … t … … <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> ti <latexit sha1_base64="(null)">(null)</latexit> j tk macro-dynamics preserved embedding and optimize them jointly. Figure 1: A toy example of temporal network with micro- As micro- and macro-dynamics mutually evolve and alternately and macro-dynamics. Micro-dynamics describe the forma- influence the process of learning node embeddings, the proposed 2 tion process of network structures (i.e., edge establish- M DNE has the capability to capture the formation process of topo- ments), while macro-dynamics refer to the evolution pat- logical structures and the evolutionary pattern of network scale in a tern of network scale (i.e., the number of edge). The red lines unified manner. We will make our code and data publicly available at website after the review. in the network mean new temporal edges (e.g., ¹v3;v4; tj º). The major contributions of this work can be summarized as follows: be larger than that of ¹v ;v ; t º, since nodes v ;v and v form 3 1 i 2 3 4 • For the first time, we study the important problem of incorpo- a closed triad [10, 34]. Such micro-dynamic evolution process de- rating the micro-dynamics and macro-dynamics into temporal scribes the edge formation between nodes at different timesteps in network embedding. detail and explains that “why the network evolves into such struc- • We propose a novel temporal network embedding method (M2DNE), tures at time t”. Modeling the micro-dynamics enables the learned which microscopically models the formation process of network node embeddings to capture the evolution of a temporal network structure with a temporal attention point process, and macro- more accurately, which will be beneficial for the downstream tem- scopically constrains the network structure to obey a certain poral network tasks. We notice that temporal network embedding evolutionary pattern with a dynamics equation. has been studied by some works [6, 26, 34, 37]. However, they either • We conduct comprehensive experiments to validate the benefits simplify the evolution process as a series of network snapshots, of M2DNE on the traditional applications (e.g., network recon- which cannot truly reveal the formation order of edges; or model struction and temporal link prediction), as well as some novel neighborhood structures using stochastic processes, which ignores applications related to temporal networks (e.g. scale prediction). the fine-grained structural and temporal properties. More importantly, at the macroscopic level, another salient prop- erty of the temporal network is that the network scale evolves with 2 RELATED WORK obvious distributions over time, e.g., S-shaped sigmoid curve [12] Recently, network embedding has attracted considerable attention or a power-law like pattern [32]. As shown in Figure 1, when the [3]. Inspired by word2vec [18], random walk based methods[9, network evolves over time, the edges are continuously being built 21] have been proposed to learn node embeddings by the skip- and form the network structures at each timestamp. Thus, the net- gram model. After that, [22, 30] are designed to better preserve work scale, i.e., the number of edges, grows with time and obeys a network properties, e.g.
Recommended publications
  • From Static to Temporal Network Theory: Applications to Functional Brain Connectivity
    METHODS From static to temporal network theory: Applications to functional brain connectivity William Hedley Thompson1, Per Brantefors1, and Peter Fransson1 1Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden Keywords: Resting-state, Temporal network theory, Temporal networks, Functional connectome, Dynamic functional connectivity Downloaded from http://direct.mit.edu/netn/article-pdf/1/2/69/1091947/netn_a_00011.pdf by guest on 28 September 2021 ABSTRACT an open access journal Network neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, interest has been growing in examining the temporal dynamics of the brain’s network activity. Although different approaches to capturing fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. This theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences, and engineering article but it has not been adopted to a great extent within network neuroscience. The objective of this article is twofold: (i) to present a detailed description of the central tenets of temporal network theory and describe its measures, and; (ii) to apply these measures to a resting-state fMRI dataset to illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this article are freely available as the Python Citation: Thompson, W. H., Brantefors, package Teneto. P., & Fransson, P. (2017). From static to temporal network theory: Applications to functional brain connectivity.
    [Show full text]
  • Are the Different Layers of a Social Network Conveying the Same
    Manivannan et al. REGULAR ARTICLE Are the different layers of a social network conveying the same information? Ajaykumar Manivannan1, W. Quin Yow1, Roland Bouffanais1y and Alain Barrat2,3*y *Correspondence: [email protected] Abstract 1Singapore University of Technology and Design, 8 Comprehensive and quantitative investigations of social theories and phenomena Somapah Road, 487372, Singapore increasingly benefit from the vast breadth of data describing human social 2 Aix Marseille Univ, Universit´ede relations, which is now available within the realm of computational social science. Toulon, CNRS, CPT, Marseille, France Such data are, however, typically proxies for one of the many interaction layers 3Data Science Laboratory, composing social networks, which can be defined in many ways and are typically Institute for Scientific Interchange composed of communication of various types (e.g., phone calls, face-to-face (ISI) Foundation, Torino, Italy Full list of author information is communication, etc.). As a result, many studies focus on one single layer, available at the end of the article corresponding to the data at hand. Several studies have, however, shown that y Equal contributor these layers are not interchangeable, despite the presence of a certain level of correlations between them. Here, we investigate whether different layers of interactions among individuals lead to similar conclusions with respect to the presence of homophily patterns in a population|homophily represents one of the widest studied phenomenon in social networks. To this aim, we consider a dataset describing interactions and links of various nature in a population of Asian students with diverse nationalities, first language and gender.
    [Show full text]
  • Temporal Network Metrics and Their Application to Real World Networks
    Temporal network metrics and their application to real world networks John Kit Tang Robinson College University of Cambridge 2011 This dissertation is submitted for the degree of Doctor of Philosophy Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the regulation length of 60 000 words, including tables and footnotes. Summary The analysis of real social, biological and technological networks has attracted a lot of attention as technological advances have given us a wealth of empirical data. Classic studies looked at analysing static or aggregated networks, i.e., networks that do not change over time or built as the results of aggregation of information over a certain period of time. Given the soaring collections of measurements related to very large, real network traces, researchers are quickly starting to realise that connections are inherently varying over time and exhibit more dimensionality than static analysis can capture. This motivates the work in this dissertation: new tools for temporal complex network analysis are required when analysing real networks that inherently change over time. Firstly, we introduce the temporal graph model and formalise the notion of shortest temporal paths, used extensively in graph theory, and show that as static graphs ignore the time order of contacts, the available links are overestimated and the true shortest paths are underestimated. In addition, contrary to intuition, we find that slowly evolving graphs can be efficient for information dissemination due to small-world behaviour in temporal graphs.
    [Show full text]
  • Temporal Network Approach to Explore Bike Sharing Usage Patterns
    Temporal Network Approach to Explore Bike Sharing Usage Patterns Aizhan Tlebaldinova1, Aliya Nugumanova1, Yerzhan Baiburin1, Zheniskul Zhantassova2, Markhaba Karmenova2 and Andrey Ivanov3 1Laboratory of Digital Technologies and Modeling, S. Amanzholov East Kazakhstan State University, Shakarim Street, Ust-Kamenogorsk, Kazakhstan 2Department of Computer Modeling and Information Technologies, S. Amanzholov East Kazakhstan State University, Shakarim Street, Ust-Kamenogorsk, Kazakhstan 3JSC «Bipek Auto» Kazakhstan, Bazhov Street, Ust-Kamenogorsk, Kazakhstan Keywords: Bike Sharing, Temporal Network, Betweenness Centrality, Clustering, Time Series. Abstract: The bike-sharing systems have been attracting increase research attention due to their great potential in developing smart and green cities. On the other hand, the mathematical aspects of their design and operation generate a lot of interesting challenges for researchers in the field of modeling, optimization and data mining. The mathematical apparatus that can be used to study bike sharing systems is not limited only to optimization methods, space-time analysis or predictive analytics. In this paper, we use temporal network methodology to identify stable trends and patterns in the operation of the bike sharing system using one of the largest bike-sharing framework CitiBike NYC as an example. 1 INTRODUCTION cluster centralization measurements for one hour of a certain day of the week into one value and decode The bike-sharing systems have been attracting it into a color cell. In order to make heat map more increase research attention due to their great contrast and effective, we propose an unusual way of potential in developing smart and green cities. On collapsing data, in which only the highest cluster the other hand, the mathematical aspects of their centralization values are taken into account.
    [Show full text]
  • Nonlinearity + Networks: a 2020 Vision
    Nonlinearity + Networks: A 2020 Vision Mason A. Porter Abstract I briefly survey several fascinating topics in networks and nonlinearity. I highlight a few methods and ideas, including several of personal interest, that I anticipate to be especially important during the next several years. These topics include temporal networks (in which the entities and/or their interactions change in time), stochastic and deterministic dynamical processes on networks, adaptive networks (in which a dynamical process on a network is coupled to dynamics of network structure), and network structure and dynamics that include “higher-order” interactions (which involve three or more entities in a network). I draw examples from a variety of scenarios, including contagion dynamics, opinion models, waves, and coupled oscillators. 1 Introduction Network analysis is one of the most exciting areas of applied and industrial math- ematics [121, 141, 143]. It is at the forefront of numerous and diverse applications throughout the sciences, engineering, technology, and the humanities. The study of networks combines tools from numerous areas of mathematics, including graph theory, linear algebra, probability, statistics, optimization, statistical mechanics, sci- entific computation, and nonlinear dynamics. In this chapter, I give a short overview of popular and state-of-the-art topics in network science. My discussions of these topics, which I draw preferentially from ones that relate to nonlinear and complex systems, will be terse, but I will cite many review articles and highlight specific research papers for those who seek more details. This chapter is not a review or even a survey; instead, I give my perspective on the short-term and medium-term future of network analysis in applied mathematics for 2020 and beyond.
    [Show full text]
  • Dyhcn: Dynamic Hypergraph Convolutional Networks
    Under review as a conference paper at ICLR 2021 DYHCN: DYNAMIC HYPERGRAPH CONVOLUTIONAL NETWORKS Anonymous authors Paper under double-blind review ABSTRACT Hypergraph Convolutional Network (HCN) has become a default choice for cap- turing high-order relations among nodes, i.e., encoding the structure of a hyper- graph. However, existing HCN models ignore the dynamic evolution of hyper- graphs in the real-world scenarios, i.e., nodes and hyperedges in a hypergraph change dynamically over time. To capture the evolution of high-order relations and facilitate relevant analytic tasks, we formulate dynamic hypergraph and devise the Dynamic Hypergraph Convolutional Networks (DyHCN). In general, DyHCN consists of a Hypergraph Convolution (HC) to encode the hypergraph structure at a time point and a Temporal Evolution module (TE) to capture the varying of the relations. The HC is delicately designed by equipping inner attention and outer at- tention, which adaptively aggregate nodes’ features to hyperedge and estimate the importance of each hyperedge connected to the centroid node, respectively. Exten- sive experiments on the Tiigo and Stocktwits datasets show that DyHCN achieves superior performance over existing methods, which implies the effectiveness of capturing the property of dynamic hypergraphs by HC and TE modules. 1 INTRODUCTION Graph Convolutional Network (GCN) Scarselli et al. (2008) extends deep neural networks to process graph data, which encodes the relations between nodes via propagating node features over the graph structure. GCN has become a promising solution in a wide spectral of graph analytic tasks, such as relation detection Schlichtkrull et al. (2018) and recommendation Ying et al. (2018). An emer- gent direction of GCN research is extending the graph covolution operations to hypergraphs, i.e., hypergraph convolutional networks Zhu et al.
    [Show full text]
  • The Pennsylvania State University the Graduate School ANALYSIS
    The Pennsylvania State University The Graduate School ANALYSIS OF EVOLVING GRAPHS A Dissertation in Industrial Engineering and Operations Research by An-Yi Chen c 2009 An-Yi Chen Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2009 The thesis of An-Yi Chen was reviewed and approved∗ by the following: Dennis K. J. Lin Distinguished Professor of Supply Chain and Information Systems Thesis Advisor, Chair of Committee M. Jeya Chandra Professor of Industrial Engineering Graduate Program Officer for Industrial Engineering Soundar R. T. Kumara Allen E. Pearce/Allen M. Pearce Professor of Industrial Engineering Zan Huang Assistant Professor of Supply Chain and Information Systems ∗Signatures are on file in the Graduate School. Abstract Despite the tremendous variety of complex networks in the natural, physical, and social worlds, little is known scientifically about the common rules that underlie all networks. How do real-world networks look like? How do they evolve over time? How could we tell an abnormal evolving network from a normal one? To be able to answer these questions, we proposed a novel analytical approach, lying at the intersection of graph theory and time series analysis, to study the network evolution process. Utilizing the notion of evolution formalizes a time domain in the problem. Specifically, we model the evolution process through the creation of a sequence of sample graphs. The idea of slicing the entire network evolution process by time stamps provides us a sequence of sampled graphs within the study period and engages the opportunity to take a time series like approach to tackle the problem.
    [Show full text]
  • Span-Core Decomposition for Temporal
    Span-core Decomposition for Temporal Networks: Algorithms and Applications Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro Cattuto, Francesco Gullo To cite this version: Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro Cattuto, et al.. Span- core Decomposition for Temporal Networks: Algorithms and Applications. ACM Transactions on Knowledge Discovery from Data (TKDD), ACM, 2020, 15 (1), pp.1-44. 10.1145/3418226. hal- 03047191 HAL Id: hal-03047191 https://hal.archives-ouvertes.fr/hal-03047191 Submitted on 16 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Span-core Decomposition for Temporal Networks: Algorithms and Applications Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro Cattuto, Francesco Gullo December 16, 2020 Abstract When analyzing temporal networks, a fundamental task is the iden- tification of dense structures (i.e., groups of vertices that exhibit a large number of links), together with their temporal span (i.e., the period of time for which the high density holds). In this paper we tackle this task by introducing a notion of temporal core decomposition where each core is associated with two quantities, its coreness, which quantifies how densely it is connected, and its span, which is a temporal interval: we call such cores span-cores.
    [Show full text]
  • Massive Scale Streaming Graphs: Evolving Network Analysis and Mining
    D 2020 MASSIVE SCALE STREAMING GRAPHS: EVOLVING NETWORK ANALYSIS AND MINING SHAZIA TABASSUM TESE DE DOUTORAMENTO APRESENTADA À FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO EM ENGENHARIA INFORMÁTICA c Shazia Tabassum: May, 2020 Abstract Social Network Analysis has become a core aspect of analyzing networks today. As statis- tics blended with computer science gave rise to data mining in machine learning, so is the social network analysis, which finds its roots from sociology and graphs in mathemat- ics. In the past decades, researchers in sociology and social sciences used the data from surveys and employed graph theoretical concepts to study the patterns in the underlying networks. Nowadays, with the growth of technology following Moore’s Law, we have an incredible amount of information generating per day. Most of which is a result of an interplay between individuals, entities, sensors, genes, neurons, documents, etc., or their combinations. With the emerging line of networks such as IoT, Web 2.0, Industry 4.0, smart cities and so on, the data growth is expected to be more aggressive. Analyzing and mining such rapidly generating evolving forms of networks is a real challenge. There are quite a number of research works concentrating on analytics for static and aggregated net- works. Nevertheless, as the data is growing faster than computational power, those meth- ods suffer from a number of shortcomings including constraints of space, computation and stale results. While focusing on the above challenges, this dissertation encapsulates contributions in three major perspectives: Analysis, Sampling, and Mining of streaming networks. Stream processing is an exemplary way of treating continuously emerging temporal data.
    [Show full text]
  • Spatial-Temporal Synchronous Graph Convolutional Networks: a New Framework for Spatial-Temporal Network Data Forecasting
    The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting Chao Song,1,2 Youfang Lin,1,2,3 Shengnan Guo,1,2 Huaiyu Wan1,2,3∗ 1School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China 2Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing, China 3CAAC Key Laboratory of Intelligent Passenger Service of Civil Aviation, Beijing, China {chaosong, yflin, guoshn, hywan}@bjtu.edu.cn Abstract ݐଵ ݐଶ Spatial-temporal network data forecasting is of great impor- tance in a huge amount of applications for traffic manage- 6SDWLDOGHSHQGHQF\ ment and urban planning. However, the underlying complex 7HPSRUDOFRUUHODWLRQ spatial-temporal correlations and heterogeneities make this 6SDWLDOWHPSRUDOFRUUHODWLRQ problem challenging. Existing methods usually use separate components to capture spatial and temporal correlations and ignore the heterogeneities in spatial-temporal data. In this 7LPH paper, we propose a novel model, named Spatial-Temporal Synchronous Graph Convolutional Networks (STSGCN), for Figure 1: The influence of the red node in a spatial-temporal spatial-temporal network data forecasting. The model is able network. The brown arrows denote the edges of the network, to effectively capture the complex localized spatial-temporal and also indicate the influence in the spatial dimension. The correlations through an elaborately designed spatial-temporal blue arrow indicates the influence of the red node on itself synchronous modeling mechanism. Meanwhile, multiple at the next time step. The green arrows indicate the influ- modules for different time periods are designed in the model ence that across both the spatial and temporal dimensions, to effectively capture the heterogeneities in localized spatial- temporal graphs.
    [Show full text]
  • Motifs in Temporal Networks
    Motifs in Temporal Networks Ashwin Paranjape, Austin Benson, & Jure Leskovec {ashwinpp,arbenson,jure}@stanford.edu Code & data available at http://snap.stanford.edu/temporal-motifs/ Overview The 36 motifs we can count quickly Temporal networks model dynamic complex systems such as telecommunications, credit With our algorithms, we can count 2-node and 3-node, 3-edge motifs efficiently. card payments, and social interactions. It takes a couple hours to count all 36 of these motifs for a phone call network with 2B edges. 2 2 2 2 2 2, 3 Two common ways that people study temporal networks are 3 1, 3 3 1 1 3 1 3 1 1 1. Growth models consider how nodes and edges enter a network (e.g., how does the M1,1 M1,2 M1,3 M1,4 M1,5 M1,6 3 2 2 2 2 2, 3 2 internet infrastructure grow over time) 1, 3 3 1 1 3 1 3 1 1 2. Snapshot analysis creates a sequence of static graphs by aggregating links in coarse- M2,1 M2,2 M2,3 M2,4 M2,5 M2,6 3 3 2 1 2 2 2, 3 2 2 grained intervals (e.g., daily phone call graph) 1, 3 3 1 3 1 1 1 M3,1 M3,2 M3,3 M3,4 M3,5 M3,6 3 3 These existing analyses do not capture the rich temporal information of complex systems 1 3 1, 3 2 3 2 1 2, 3 1 2 1 2 1 2 that are constantly in motion.
    [Show full text]
  • Cascades on Temporal Networks
    Cascades on Temporal Networks Georgios Kapros-Anastasiadis St Anne's College University of Oxford A thesis submitted for the degree of M.Sc. in Mathematical Modelling and Scientific Computing September 2012 Acknowledgements I would like to thank my supervisor Mason Porter for his guidance, help, insight, and support that made the writing of this thesis an incredibly interesting, enjoyable and rewarding experience. I am also grateful to him for introducing me to the exciting field of networks and to the community that enthusiastically undertakes research in this area. I would also like to thank James Gleeson for his help, and Kevin O'Sullivan for his invaluable help and guidance in producing part of the code used in this thesis. I am grateful to Sergey Melnik for his advice and guidance regarding the numerical modelling of random networks, and I would also like to thank Till Hoffmann and Renaud Lambiotte for their assistance and insights during the early stages of my introduction to network science. I also thank Sang Hoon Lee for his helpful comments and for introducing me to previous work similar to the topic of this thesis. Additionally, I am grateful to Kathryn Gillow and everyone involved in the M.Sc. for making this course an overall amazing experience. A big thank you to all my fellow students in the M.Sc. as well. I am grateful for studying this course with all of you. Lastly, to my friends and family, who I love and am forever grateful to. Abstract In this thesis, we investigate threshold models for information cascades in time-dependent networks.
    [Show full text]