Recovery of Carbon and Cryolite from Spent Pot Lining of Aluminium Reduction Cells by Chemical Leaching

Total Page:16

File Type:pdf, Size:1020Kb

Recovery of Carbon and Cryolite from Spent Pot Lining of Aluminium Reduction Cells by Chemical Leaching Trans. Nonferrous Met. Soc. China 22(2012) 222−227 Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching SHI Zhong­ning, LI Wei, HU Xian­wei, REN Bi­jun, GAO Bing­liang, WANG Zhao­wen School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China Received 29 November 2010; accepted 8 October 2011 Abstract: A two­step alkaline­acidic leaching process was conducted to separate the cryolite from spent pot lining and to purify the carbon. The influencing factors of temperature, time, and the ratio of liquid to solid in alkaline and acidic leaching were investigated. The results show that the recovery of soluble compounds of Na3AlF6 and Al2O3 dissolving into the solution during the NaOH leaching is 65.0%,and the purity of carbon reaches 72.7%. During the next step of HCl leaching, the recovery of soluble compounds of CaF2 and NaAl11O17 dissolving into the HCl solution is 96.2%, and the carbon purity increases to 96.4%. By mixing the acidic leaching solution and the alkaline leaching solution, the cryolite precipitates under a suitable conditions of pH value 9 at 70 °C for 2 h. The cryolite precipitating rate is 95.6%, and the purity of Na3AlF6 obtained is 96.4%. Key words: spent pot lining; recovery; chemical leaching; aluminium electrolysis method separates the carbon and fluoride according to 1 Introduction the difference in solubility, density and surface properties between carbon and fluorides. For example, the froth With a rapid development of the primary aluminium flotation technology is a typically physical separation industry, more and more spent pot lining (SPL) is process for SPL treatment [3]. However, physical accumulated and needs to be dealt with. SPL is a separation method is difficult to improve the carbon hazardous solid waste from cell retrofitting. However, purity and recovery efficiency of the leachable substance. SPL contains some valuable inorganic compounds, such For thermal treatment, the common way is to burn the as Na3AlF6, NaF, CaF2, Al2O3 and NaAl11O17. The SPL [4−7]. Although the SPL is decomposed, some content of inorganic compounds in the SPL varies from waste in SPL transfers into the refractory components, 25% to 50% depending on the cell’s condition [1]. and the fluoride is recovered as a gaseous HF effluent Besides the inorganic compounds, the other composition which can be absorbed with smelter grade Al2O3 [2], in the SPL is carbon that has graphitized at elevated while the carbon is burnt for boiler heating. This thermal temperature of 800−900 °C for several years. treatment is complicated in operation and the valuable Graphitized carbon and inorganic compounds in SPL are source of carbon is not reused. In addition, the chemical valuable resources. In the past, the simplest way of leaching can leach the soluble compounds from the SPL dealing with SPL was the process of landfill which is not by using NaOH or Al(NO3)3∙9H2O and AlCl3∙6H2O environmentally acceptable since the fluoride in SPL will [8−10]. Because of the low reaction rate, the approach penetrate and contaminate the underground water, and no for treating Na3AlF6 and CaF2 using Al(NO3)3∙9H2O or o valuable resources are recovered. Therefore, carbon and AlCl3∙6H2O takes long time of 24 h at 25 C [9, 10], inorganic compounds may be recovered as a secondary which is not productive and very costly. However, the resource. NaOH leaching just takes 2−3 h and the leaching reagent Generally, there are some ways for treating SPL, is economical. including hydrometallurgical and pyrometallurgical In this work, three steps are conducted to separate processing, such as physical separation, thermal the crolyite from the carbon in SPL. The first step of treatment and chemical leaching methods [2]. Physical alkaline leaching is performed to dissolve Na3AlF6, NaF, Foundation item: Project (50804010) supported by the National Natural Science Foundation of China Corresponding author: SHI Zhong­ning; Tel:+86­24­83686464; E­mail: [email protected] DOI: 10.1016/S1003­6326(11)61164­3 SHI Zhong­ning, et al/Trans. Nonferrous Met. Soc. China 22(2012) 222−227 223 and Al2O3 into the basic solution. The second step of acidic leaching is carried out to further dissolve the CaF2 and NaAl11O17 in the carbon obtained from the first step into acidic solution. In the third step, the cryolite is precipitated by mixing the basic solution and acidic solution which come from the fore two steps. 2 Experimental All used chemical reagents were analytical grade. Spent pot lining samples came from a 300 kA aluminium reduction cell. All the leaching experiments were run at a mechanical stirring system of 300 r/min at normal pressure. The concentration of NaOH leaching solution Fig. 1 XRD patterns of SPL sample and leaching products was 2.5 mol/L, while the concentration of HCl leaching solution was 9.7 mol/L. The experiment parameters of leaching rate. This is because increasing L/S ratio leaching and precipitation are shown in Table 1, where θ − provides a mass of OH to react with the soluble Na3AlF6 is the leaching temperature in alkaline leaching, acidic and Al2O3 in the L/S ratio range of 2−4.5. The leaching and cryolite precipitating experiments, and t is concentration of soluble Na3AlF6 and Al2O3 in the the leaching time in alkaline leaching, acidic leaching leaching solution decreases with the increase of L/S ratio, and cryolite precipitate experiments, L/S is the liquid to which makes the leaching rate decrease when the L/S solid ratio. The alkaline leaching solution after filtration ratio further increases from 4.5 to 6. Therefore, the was characterized by Raman spectroscopy (Horiba Jobin leaching rate does not increase when the L/S ratio is Yvon, HR800, France). further increased from 4.5 to 6. Moreover, as seen in Table 2, the highest purity of carbon is 73.0%, and the Table 1 Leaching and precipitating experimental parameters highest leaching rate is 65.4%. This is not a desirable (L/S)/ Step θ/°C t/min pH result for reusing the carbon, and so the second step is (cm3 ∙ g −1) needed. After washing and filtering, the resulted solid Alkaline leaching 60−100 20−240 2−6 carbon still contains insoluble compounds of CaF2 and Acidic leaching 60−100 20−240 2−6 NaAl11O17 characterized by XRD, as shown in Fig. 1(b). Cryolite precipitate 20−100 20−1440 6−12 Table 2 Effect of L/S ratio on alkaline leaching 3 Results and discussion (L/S)/ Leaching rate of Purity of carbon/% (cm3 ∙ g −1) soluble compounds/% 3.1 Alkaline leaching 6 73.0 65.4 The particle size of the SPL samples for alkaline 5.5 72.9 65.2 leaching is in the range of 100−165 µm after grinding. 5 72.9 65.2 The element contents (mass fraction) of SPL are 13.91% 4.5 73.0 65.0 Na, 13.83% F, 6.82% Al, 48.83% C, 1.19% Ca, and the 4 68.8 57.7 balance of O and other trace elements measured by chemical analysis. The phase compositions of the SPL 3 64.9 49.4 2 55.9 26.1 are Na3AlF6, NaF, CaF2, Al2O3, NaAl11O17, and carbon characterized by X­ray diffraction (Panalytical B.V, PW 3040/60H, Netherlands), as shown in Fig. 1(a). The 3.1.2 Effect of temperature carbon in SPL has graphitized to 78.3% calculated by the In the solution of 2.5 mol/L NaOH with a L/S ratio Franklin Model [11]. of 5, the SPL was leached for 3 h at different 3.1.1 Effect of L/S ratio temperatures of 60, 70, 80, 90 and 100 °C. The results SPL samples were leached in 2.5 mol/L NaOH are shown in Table 3. It is observed that the temperature solution for 2 h at 100 °C, and the L/S ratio varied in the has an appreciable effect on the leaching rate. The range of 2−6 cm 3/ g. The results are shown in Table 2. It leaching rate increases from 36.8% to 65.0% when the can be seen that the leaching rate of soluble compounds temperature increases from 60 °C to 100 °C, while the increases with increasing the L/S ratio in the range of carbon purity increases from 59.6% to 72.7%. This effect 2−4.5. When the L/S goes up to 4.5, the increase of can be explained that the reaction velocity constant K L/S ratio has no more effect on the carbon purity and the increases with the increase of temperature. 224 SHI Zhong­ning, et al/Trans. Nonferrous Met. Soc. China 22(2012) 222−227 Table 3 Effect of temperature on alkaline leaching leaching, one solution is the product of reaction between Leaching rate of NaOH and Na3AlF6, and the other is sodium aluminate Temperature/°C Purity of carbon/% soluble compounds/% solution. 60 59.6 36.8 It can be seen from Fig. 2 that there are same peaks in spectra (a), (b) and (c) at about 625 cm −1 which are 70 61.9 42.6 assigned to Al(OH) − ion [12−14]. However, the intensity 80 67.1 54.2 4 of spectrum (a) is lower than that of spectra (b) and (c). It 90 69.2 58.4 can be explained that the presence of more ions in the 100 72.7 65.0 − leaching solution diminishes the Al(OH)4 peak intensity significantly. Moreover, there are two other peaks at 3.1.3 Effect of reaction time about 427 cm −1 and 470 cm −1 in spectra (a) and (b) in 4− The leaching tests were carried out at 100 °C in 2.5 Fig.
Recommended publications
  • Recycling of Hazardous Waste from Tertiary Aluminium Industry in A
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC 1 Recycling of hazardous waste from tertiary aluminium 2 industry in a value-added material 3 4 Laura Gonzalo-Delgado1, Aurora López-Delgado1*, Félix Antonio López1, Francisco 5 José Alguacil1 and Sol López-Andrés2 6 7 1Nacional Centre for Metallurgical Research, CSIC. Avda. Gregorio del Amo, 8. 28040. 8 Madrid. Spain. 9 2Dpt. Crystallography and Mineralogy. Fac. of Geology. University Complutense of 10 Madrid. Spain. 11 *Corresponding author e-mail: [email protected] 12 13 Abstract 14 15 The recent European Directive on waste, 2008/98/EC seeks to reduce the 16 exploitation of natural resources through the use of secondary resource management. 17 Thus the main objective of this paper is to explore how a waste could cease to be 18 considered as waste and could be utilized for a specific purpose. In this way, a 19 hazardous waste from the tertiary aluminium industry was studied for its use as a raw 20 material in the synthesis of an added value product, boehmite. This waste is classified as 21 a hazardous residue, principally because in the presence of water or humidity, it releases 22 toxic gases such as hydrogen, ammonia, methane and hydrogen sulphide. The low 23 temperature hydrothermal method developed permits the recovery of 90% of the 24 aluminium content in the residue in the form of a high purity (96%) AlOOH (boehmite). 25 The method of synthesis consists of an initial HCl digestion followed by a gel 26 precipitation. In the first stage a 10% HCl solution is used to yield a 12.63 g.l-1 Al3+ 27 solution.
    [Show full text]
  • The Solubility of Aluminium in Melts Containing Aluminium Halides
    THE SOLUBILITY OF ALUMINIUM IN MELTS CONTAINING ALUMINIUM HALIDES A Thesis presented for the degree of Doctor of Philosophy in the University of London by John Dyson Usher London, May 1965 ABSTRACT A technique for measuring the solubility of aluminium in NaF-A1F3 and Nall-A1F3+5%A1203 melts has been developed using a refractory titanium boride- carbide crucible and a gas volumetric method of analysis. Experiments were conducted at 10209 1100 and 1180°C; in both systems no change in solubility limit was detected over the experimental composition range of 25.6 - 36.6 and 25.8 - 31.9 mol % AlF3 respectively. The figures in the pure fluoride are 0.022 0.041 and 0.072 wt %; in the alumina melts 0.073, 0.121 and 0.169 wt %. Solution mechanisms have been suggested which account for the observed behaviour, and an attempt has been made to interpret the current inefficiency process in the reduction cell in terms of the results. CONTENTS 1. INTRODUCTION Page 1.1 Aluminium Reduction Cell - Brief Description 1 1.2 Current Efficiency 3 1.2.1 Measurement 3 1.2.2 Cell Variables and Current Efficiency 5 1.2.2 Postulated Mechanisms of Metal Lose 6 1.3 Origins of Present Work 7 1.3.1 Information Required 7 1.3.A Preliminary Theoretical Approach 9 1.4 Metal-Molten Salt Solutions 11 1.4.1 General 11 1.4.2 Nature of Metal-Molten Salt Solutions 16 1.4.3 Extent of Solubility 19 1.4.4 Effect of Foreign Ions on Metal Solubility 23 1.5 Structure of Cryolite and Cryolite-Alumina Melts 25 1.5.1 Pure Molten Cryolite 25 1.5.2 Cryolite-Alumina Melts 33 1.6 Thermodynamics of Aluminium+Cryolite 40 1.6.1 Equilibrium 1.6(i): Experimental 40 1.6.2 Equilibrium 1.6(i): Calculations 42 1.6.3 Equilibrium 1.6(ii) 45 1.7 Previous Experimental Work 46 1.7.1 Analysis by Metal Weight Loss 48 1.7.2 Gas Volumetric Method 52 2.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • The Structure and Vibrational Spectroscopy of Cryolite, Na3alf6 Cite This: RSC Adv., 2020, 10, 25856 Stewart F
    RSC Advances PAPER View Article Online View Journal | View Issue The structure and vibrational spectroscopy of cryolite, Na3AlF6 Cite this: RSC Adv., 2020, 10, 25856 Stewart F. Parker, *a Anibal J. Ramirez-Cuesta b and Luke L. Daemenb Cryolite, Na3[AlF6], is essential to commercial aluminium production because alumina is readily soluble in molten cryolite. While the liquid state has been extensively investigated, the spectroscopy of the solid state has been largely ignored. In this paper, we show that the structure at 5 K is the same as that at Received 31st May 2020 room temperature. We use a combination of infrared and Raman spectroscopies together with inelastic Accepted 1st July 2020 neutron scattering (INS) spectroscopy. The use of INS enables access to all of the modes of Na3[AlF6], DOI: 10.1039/d0ra04804f including those that are forbidden to the optical spectroscopies. Our spectral assignments are supported rsc.li/rsc-advances by density functional theory calculations of the complete unit cell. Introduction In view of the technological importance of cryolite, we have Creative Commons Attribution 3.0 Unported Licence. carried out a comprehensive spectroscopic investigation and 1 Cryolite, Na3[AlF6], occurs naturally as a rare mineral. Histori- report new infrared and Raman spectra over extended temper- cally, it was used as a source of aluminium but this has been ature and spectral ranges and the inelastic neutron scattering superseded by bauxite (a mixture of the Al2O3 containing (INS) spectrum. The last of these is observed for the rst time minerals boehmite, diaspore and gibbsite), largely because of and enables access to all of the modes of Na3[AlF6].
    [Show full text]
  • Cryolithionite and Li in the Cryolite Deposit Ivigtut, South Greenland
    Cryolithionite and Li in the Cryolite Deposit Ivigtut, South Greenlan d By HANS PAULY Matematisk-fysiske Meddelelser 42 : 1 Det Kongelige Danske Videnskabernes Selskab The Royal Danish Academy of Sciences and Letter s Commissioner : Munksgaard • Copenhagen 1986 Abstract Cryolithionite always occurred as single crystals in cryolite : idiomorphic, subidiomorphic and, rarely , anhedral . It was found in siderite- cryolite ; in a variety of this type : black cryolite with red-brown Th - containing fluorite, siderite etc . (BCrbF) ; in pure, white cryolite ; in cryolite veining the wall rocks . I t belongs to the period in which siderite- cryolite formed . Analyses of 268 cryolite samples gave 92 ppm Li (min. 19, rnax . 224 ppm) . Cryolite from samples with cryolithionite : 81 ppm, cryolite from BCrbF with no cryolithionite : 185 ppm . Cryolithionite seems to have formed by exsolution from cryolite with 155 ppm Li or more . The high con- traction of cryolite on cooling (1 vol% pr. 100°C) may have given rise to low-pressure regions within the cryolite where cryolithionite (d= 2 .77) replaced cryolite (d- 2 .97) after formation of the complicated twin structures in the cryolite - at or below 450°C . The compound Na 2LiAIF 6 (d=3 .02) is not present in th e deposit. HANS PAULY Technical University of Denmark bg .204, DK-2800 Lyngb y Denmark Keywords: Cryolithionite, Li in cryolite, siderite- cryolite, Th-containing fluorite, black cryolite, Ivigtut , South-Greenland . List of Content s Introduction 3 Cryolithionite in the deposit 3 In situ observations of cryolithionite 6 The cryolite deposit at Ivigtut 7 Appearance of cryolithionite, its outer shape, mineral and fluid inclusions 1 1 Formation of cryolithionite 1 7 Li in cryolite and other minerals of the Ivigtut deposit 1 8 Cryolithionite formed by exsolution from cryolite 1 9 Acknowledgments 2 3 Literature 23 © Det kongelige Danske Videnskabernes Selskab 1986 Printed in Denmark by Bianco Lunos Bogtrykkeri A/S .
    [Show full text]
  • Bauxite and Aluminum Handbook Commodities and Export Projections Division Economic Analysis and Projectuonsdepartment
    I Bauxite and Aluminum Handbook Commodities and Export Projections Division Economic Analysis and ProjectUonsDepartment 3 . February 1981 TABLE OF CONTENTS Page No. I. CHARACTERISTICSOF BAUXITE/ALUMINA/ALUIMINUM.............. 1 A. Introduction .......... 1 B. Definition of Products .......t ........ ......... * 1 C. Uses ....... ..... 2 D. Technology . ... ... 5 II. THE LOCATION OF THE INDUSTRY....................... #...... I A. Production...... ... .. ......................... .. 1 B. Consumption....... ... .. to. 6 C. Trade.................................. 8 III. THE STRUCTURE OF THE INDUSTRY........................ 1 A. Organization ................... .- .. ....... ... 1 B. Marketing .............# ............................ 4 O ZIV.ECONOMIC PARAMETERS FOR MARKET ANALYSIS OF THE BAUXITE-ALUMINUMINDUSTRY ......................................... 1 A. Demand and Supply Elasticities........ ........... 1 B. Price DeterminationMechanisms ....................... 2 V. MARKET PRICES FOR BAUXITE, ALUMINA AND ALUMINUM.......... 1 A. Bauxite................................ .... .*............... 1 B. Alumina .............................................. 7 C. Aluminum,, ........**.............. #.... **.*..................... 7 VI. SPECIAL ISSUES........................................... 1 A. Shipping................... .... .0.0.......................1 B. The InternationalBauxite Association (IBA) .......... 3 C. The Integrated Program for Commodities............... 4 D. United States Government Stockpile................... 5 February1981
    [Show full text]
  • Leaching Behavior of Lithium-Bearing Bauxite with High-Temperature Bayer Digestion Process in K2O-Al2o3-H2O System
    metals Article Leaching Behavior of Lithium-Bearing Bauxite with High-Temperature Bayer Digestion Process in K2O-Al2O3-H2O System Dongzhan Han 1,2 , Zhihong Peng 1,*, Erwei Song 2 and Leiting Shen 1 1 School of Metallurgy and Environment, Central South University, Changsha 410083, China; [email protected] (D.H.); [email protected] (L.S.) 2 Zhengzhou Non-Ferrous Metals Research Institute Co. Ltd. of CHALCO, Zhengzhou 450041, China; [email protected] * Correspondence: [email protected] Abstract: Lithium is one of the secondary mineral elements occurring in bauxite. The behavior of lithium-bearing bauxite in the digestion process was investigated, and the effect of digestion conditions on the extraction rates of lithium was studied. The results demonstrate that the mass ratio of the added CaO to bauxite, the KOH concentration, and the digestion temperature had a significant effect on the lithium extraction efficiency. An L9(34) orthogonal experiment demonstrated that the order of each factor for lithium extraction from primary to secondary is lime dosage, caustic concentration, and reaction temperature. Under the optimal conditions (t = 60 min, T = 260 ◦C, r(K2O) = 280 g/L, and 16% lime dosage), the leaching efficiencies of lithium and alumina are 85.6% and 80.09%, respectively, with about 15% of lithium entering into red mud. The findings of this study maybe useful for controlling lithium content in alumina products and lithium recovery from the Citation: Han, D.; Peng, Z.; Song, E.; Bayer process. Shen, L. Leaching Behavior of Lithium-Bearing Bauxite Keywords: lithium-bearing bauxite; digestion; K2O-Al2O3-H2O system withHigh-Temperature Bayer Digestion Process in K2O-Al2O3-H2O System.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 73, pages 1492-1499. 1988 NEW MINERAL NAMES* JOHN L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontario KIA OGI, Canada ERNST A. J. BURKE lnstituut voor Aardwetenschappen, Vrije Universitiete, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands T. SCOTT ERCIT, JOEL D. GRICE National Museum of Natural Sciences, Ottawa, Ontario KIA OM8, Canada Acuminite* prismatic to acicular crystals that are up to 10 mm long and 0.5 H. Pauly, O.Y. Petersen (1987) Acuminite, a new Sr-fluoride mm in diameter, elongate and striated [001], rhombic to hex- from Ivigtut, South Greenland. Neues Jahrb. Mineral. Mon., agonal in cross section, showing {l00} and {l10}. Perfect {100} 502-514. cleavage, conchoidal fracture, vitreous luster, H = 4, Dm'.. = 2.40(5) glcm3 (pycnometer), Dcale= 2.380 glcm3 for the ideal Wet-chemical analysis gave Li 0.0026, Ca 0.0185, Sr 37.04, formula, and Z = 4. Optically biaxial positive, a = 1.5328(4), (3 Al 11.86, F 33.52, OH (calc. from anion deficit) 6.82, H20 (calc. = 1.5340(4), 1.5378(4), 2 Vmoa,= 57(2)°, 2 Vcale= 59°; weak assuming 1 H20 in the formula) 7.80, sum 97.06 wt%, corre- 'Y = dispersion, r < v; Z = b, Y A c = -10°. X-ray structural study sponding to Sro98AIl.o2F.o7(OH)o.93H20. The mineral occurs as indicated monoclinic symmetry, space group C21c, a = 18.830(2), aggregates of crystals shaped like spear points and about I mm b= I 1.517(2), c= 5.190(I)A,{3 = 100.86(1)°. A Guinierpowder long.
    [Show full text]
  • Vestnik Otdelenia Nauk O Zemle RAN, VOL. 3, NZ6103, Doi:10.2205/2011NZ000233, 2011
    Vestnik Otdelenia nauk o Zemle RAN, VOL. 3, NZ6103, doi:10.2205/2011NZ000233, 2011 A comparison between compositions of fluorine saturated experimental melts and cryolite-bearing granites T. I. Shchekina1, E. N. Gramenitskiy1, Ya. O. Alferieva1, E. S. Zubkov2 1M. V. Lomonosov Moscow State University, Department of Geology 2Institute of Experimental Mineralogy RAS, Chernogolovka [email protected], fax: 8 (495) 932 8889, tel.: 8 (495) 939 2040 Key words: cryolite-bearing granites, fluorine saturated melts, aluminosilicate, aluminofluoride melt, agpaitic and peraluminous granites, magmatic cryolite Citation: Shchekina,,T. I., E. N. Gramenitskiy, Ya. O. Alferieva, E. S. Zubkov (2011), A comparison between compositions of fluorine saturated experimental melts and cryolite-bearing granites, Vestn. Otd. nauk Zemle, 3, NZ6103, doi:10.2205/2011NZ000233. The question of the cryolite-bearing granites genesis and related deposits of cryolite (Na3AlF6) so far is debatable. On the one hand there is an obvious evidence of magmatic crystallization of cryolite, on the other – hydrothermal-metasomatic one. When considering the magmatic hypothesis, we relied on data from experiments conducted in the granite system, saturated aqueous and fluorine fluid, at temperatures ranging from 650 to 800 ° C and PH2O = 1000 bar. It was shown [Gramenitskiy, et al, 2005] that the equilibrium field of cryolite with aluminosilicate melt on the phase diagram ranges from quartz-normative to nepheline- normative area. In peraluminous part of the system it is limited by equilibrium with topaz, corundum and aluminofluoride melt (close to chiolith – Na5[Al3O14]), and in agpaitic part of the system it is limited by equilibrium with villiaumite. Most of the occurrences of cryolite is directly related to intrusive rocks of the alkali-granite series, attributed to the A-type.
    [Show full text]
  • Aluminum Discovered: H.C. Oersted in 1825 Name: from Alum, Used By
    Aluminum Discovered: H.C. Oersted in 1825 Name: From alum, used by ancient Greeks and Romans as an astringent and as a mordant in dyeing. Sir Humphrey Davy proposed the name aluminum, but changed it to aluminium to have it conform to the spelling of other metals. This spelling was used in the U.S. until 1925 when the ACS when back to the original spelling. The rest of the world uses the “-ium” ending. Occurrence: It is the most common metallic element in the Earth's crust and occurs in many different forms in nature some of which are: bauxite, cryolite (Na3AlF6), micas, feldspars, vermiculite, diaspore (AlO2H), gibbsite (Al(OH)3), garnet (Ca3Al2(SiO4)3), beryl (Be3Al2Si6O18), turquoise (Al2(OH)3PO4H2O/Cu), corundum (-Al2O3), other Al2O3 with impurities are ruby (Cr(III)), topaz (Fe(III)), sapphire, and oriental emerald. Bauxite deposits are common. Large reserves are found in Australia, Africa, Brazil, Central America, Guinea, and Jamaica. Isolation: Bauxite (AlO2H•nH2O) is dissolved in molten NaOH (1200 ºC) and is precipitated with CO2, then dissolved in cryolite at 950 ºC and electrolyzed (Bayer process). Cost of 1 gram, 1 mole: $0.08, $2.20 Natural Isotopes: 27Al (100%) Physical and Relatively low melting point Chemical High electrical conductivity Properties: Soft Low density Silvery white in color Non-magnetic Corrosion resistant Highly malleable and ductile Reactions: 2 Al + 6 HCl 2 AlCl3 + 3 H2 2 Al(OH)3 Al2O3 + 3 H2O Uses: Alloys for building construction, transportation, containers and packaging, electrical power lines, cookware, etc. Al3.6Zr(OH)11.6Cl3.2•xH2O•glycine is the active ingredient in some antiperspirants Al2O3 is a major component of Portland cement Beryllium Discovered: By L.-N.
    [Show full text]
  • Simmonsite Na2lialf6
    Simmonsite Na2LiAlF6 Crystal Data: Monoclinic. Point Group: 2/m. Twinning: Complex polysynthetic. Physical Properties: Cleavage: None. Fracture: Subconchoidal. Tenacity: Not extremely brittle. Hardness = 2.5-3 D(meas.) = 3.05(2) D(calc.) = 3.06(1) Optical Properties: Transparent to translucent. Color: Pale buff cream. Streak: White. Luster: Greasy. Optical Class: Biaxial, very nearly isotropic. n = 1.359(1) Cell Data: Space Group: P21/n. a = 5.2842(1) b= 5.3698(1) c = 7.5063(2) β = 89.98(1)° Z = 4 X-ray Powder Pattern: Zapot pegmatite, Gillis Range, Mineral Co., Nevada. 4.33 (100), 1.877 (90), 2.25 (70), 2.65 (60), 2.173 (50), 2.152 (40), 1.526 (25) Chemistry: (1) Na 23.4 Al 13.9 F 58.6 Li [3.56] Total 99.46 (1) Zapot pegmatite, Gillis Range, Mineral Co., Nevada; average of 7 electron microprobe analyses, Li calculated; corresponds to Na1.98Li1.00Al1.00F6. Mineral Group: Perovskite supergroup, elpasolite subgroup. Occurrence: A late-stage hydrothermal mineral in a breccia pipe that cuts an amazonite-topaz- zinnwaldite pegmatite. Association: Cryolite, cryolithionite, elpasolite. Distribution: In the Zapot amazonite-topaz-zinnwaldite pegmatite, Gillis Range, Mineral Co., Nevada [TL]. From the Katugin massif, Transbaikalia, Russia. Name: Honors Professor William B. Simmons (b. 1943), Professor of Mineralogy and Petrology, University of New Orleans, New Orleans, USA, in recognition of his numerous contributions about granitic pegmatites and their mineralogy. Type Material: U.S. National Museum, Smithsonian Institution, Washington, D.C., USA. References: (1) Foord, E.E., J.T. O'Connor, J.M. Hughes, S.J. Sutley, A.U.
    [Show full text]
  • Lithium Mineral Evolution and Ecology: Comparison with Boron and Beryllium
    Eur. J. Mineral. – 2019, 31, 755 774 To Christian Chopin, Published online 6 June 2019 for 30 years of dedicated service to EJM Lithium mineral evolution and ecology: comparison with boron and beryllium Edward S. GREW1,*, Grete HYSTAD2, Myriam P. C. TOAPANTA2, Ahmed ELEISH3, Alexandra OSTROVERKHOVA4, Joshua GOLDEN5 and Robert M. HAZEN6 1School of Earth and Climate Sciences, 5790 Bryand Global Sciences Center, University of Maine, Orono, ME 04469-5790, USA *Corresponding author, e-mail: [email protected] 2Department of Mathematics, Statistics, and Computer Science, Purdue University Northwest, Hammond, IN 46323, USA 3Tetherless World Constellation, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA 4Department of Geology, Southern Illinois University, Parkinson, Mail Code 4324, Carbondale, IL 62901, USA 5Department of Geosciences, University of Arizona, Tucson, AZ 85721-0077, USA 6Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, DC 20015, USA Abstract: The idea that the mineralogical diversity now found at or near Earth’s surface was not present for much of the Earth’s history is the essence of mineral evolution, and the geological histories of the 118 Li, 120 Be, and 296 B minerals are not exceptions. Present crustal concentrations are generally too low for Li, Be, and B minerals to form (except tourmaline); this requires further enrichment by 1–2 orders of magnitude by processes such as partial melting and mobilization of fluids. As a result, minerals containing essential Li and Be are first reported in the geologic record at 3.0–3.1 Ga, later than Li-free tourmaline at 3.6 Ga.
    [Show full text]