Habitat and Environment of Islands— Primary and Supplemental Island Sets

Total Page:16

File Type:pdf, Size:1020Kb

Habitat and Environment of Islands— Primary and Supplemental Island Sets Habitat and Environment of Islands— Primary and Supplemental Island Sets Professional Paper 1590 EXPLANATION Primary Island Set Supplemental Island Set A Supplemental Island Set B U.S. Department of the Interior U.S. Geological Survey HABITAT AND ENVIRONMENT OF ISLANDS Primary and Supplemental Island Sets By N.C. Matalas and Bernardo F. Grossling U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1590 U.S. Department of the Interior GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director Any use of trade, product, or firm names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government Reston, Virginia 2002 Library of Congress Cataloging-in-Publication Data Matalas, Nicholas C., 1930– Habitat and environment of islands : primary and supplemental island sets / by N.C. Matalas and Bernardo F. Grossling. p. cm. — (U.S. Geological Survey professional paper ; 1590) Includes bibliographical references (p. ). ISBN 0-607-99508-4 1. Island ecology. 2. Habitat (Ecology) I. Grossling, Bernardo F., 1918– II. Title. III. Series. QH541.5.I8 M27 2002 577.5’2—dc21 2002035440 For sale by the U.S. Geological Survey Information Services Box 25286, Federal Center, Denver, CO 80225 PREFACE The original intent of the study was to develop a first-order synopsis of island hydrology with an inte- grated geologic basis on a global scale. As the study progressed, the aim was broadened to provide a frame- work for subsequent assessments on large regional or global scales of island resources and impacts on those resources that are derived from global changes. Fundamental to the study was the development of a comprehensive framework — a wide range of parameters that describe a set of "saltwater" islands sufficiently large to •Characterize the spatial distribution of the world’s islands; •Account for all major archipelagos; •Account for almost all oceanically isolated islands, and •Account collectively for a very large proportion of the total area of the world’s islands whereby additional islands would only marginally contribute to the representativeness and accountability of the island set. The comprehensive framework, which is referred to as the “Primary Island Set,” is built on 122 parameters that describe 1,000 islands. To complement the investigations based on the Primary Island Set, two supplemental island sets, Set A – Other Islands (not in the Primary Island Set) and Set B – Lagoonal Atolls, are included in the study. The Primary Island Set, together with the Supplemental Island Sets A and B, provides a framework that can be used in various scientific disciplines for their island-based studies on broad regional or global scales. The study uses an informal, coherent, geophysical organization of the islands that belong to the three island sets. The organization is in the form of a global island chain, which is a particular sequential ordering of the islands referred to as the “Alisida.” The Alisida was developed through a trial-and-error procedure by seeking to strike a balance between “minimizing the length of the global chain” and “maximizing the chain’s geophysical coherence.” The fact that an objective function cannot be minimized and maximized simultaneously indicates that the Alisida is not unique. Global island chains other than the Alisida may better serve disciplines other than those of hydrology and geology. Preface III IV HABITAT AND ENVIRONMENT OF ISLANDS Primary and Supplemental Island Sets CONTENTS Preface................................................................................................................................................................................... III Acknowledgments................................................................................................................................................................. XI Overview ............................................................................................................................................................................... 1 Primary Island Set ................................................................................................................................................................. 3 Identification Parameters............................................................................................................................................. 12 Historical Parameters .................................................................................................................................................. 14 First European Contact...................................................................................................................................... 14 Other Names of the Islands ............................................................................................................................... 17 Summary ........................................................................................................................................................... 21 Geographic Parameters ............................................................................................................................................... 21 Locations of Islands .......................................................................................................................................... 22 Island Affinities ................................................................................................................................................. 25 Topologic Properties of the Islands................................................................................................................... 26 Summary ........................................................................................................................................................... 29 Physiographic Parameters ........................................................................................................................................... 30 Size of Islands ................................................................................................................................................... 30 Quantitative Descriptors of Island Groups........................................................................................................ 33 Qualitative Descriptors of Island Topographies ................................................................................................ 33 Qualitative Descriptors of Island Shapes .......................................................................................................... 36 Dimensional Measures of Islands ..................................................................................................................... 39 Summary ........................................................................................................................................................... 40 Geologic Parameters ................................................................................................................................................... 41 Relational Features of the Earth’s Surface ........................................................................................................ 41 Geologic Classification ..................................................................................................................................... 44 Volcanism.......................................................................................................................................................... 45 Geologic Topology............................................................................................................................................ 45 Summary ........................................................................................................................................................... 45 Hydrologic Parameters................................................................................................................................................ 53 Hydrologic Sketch............................................................................................................................................. 53 Summary ........................................................................................................................................................... 54 Economic Parameters.................................................................................................................................................. 60 Sovereignty of Islands....................................................................................................................................... 60 Populations of Islands and Principal Centers.................................................................................................... 64 Principal Seaports and Airports......................................................................................................................... 69 Local Time ........................................................................................................................................................ 72 Summary ........................................................................................................................................................... 72 Environmental Parameters..........................................................................................................................................
Recommended publications
  • Subsidence and Growth of Pacific Cretaceous Plateaus
    ELSEVIER Earth and Planetary Science Letters 161 (1998) 85±100 Subsidence and growth of Paci®c Cretaceous plateaus Garrett Ito a,Ł, Peter D. Clift b a School of Ocean and Earth Science and Technology, POST 713, University of Hawaii at Manoa, Honolulu, HI 96822, USA b Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 10 November 1997; revised version received 11 May 1998; accepted 4 June 1998 Abstract The Ontong Java, Manihiki, and Shatsky oceanic plateaus are among the Earth's largest igneous provinces and are commonly believed to have erupted rapidly during the surfacing of giant heads of initiating mantle plumes. We investigate this hypothesis by using sediment descriptions of Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) drill cores to constrain plateau subsidence histories which re¯ect mantle thermal and crustal accretionary processes. We ®nd that total plateau subsidence is comparable to that expected of normal sea¯oor but less than predictions of thermal models of hotspot-affected lithosphere. If crustal emplacement was rapid, then uncertainties in paleo-water depths allow for the anomalous subsidence predicted for plumes with only moderate temperature anomalies and volumes, comparable to the sources of modern-day hotspots such as Hawaii and Iceland. Rapid emplacement over a plume head of high temperature and volume, however, is dif®cult to reconcile with the subsidence reconstructions. An alternative possibility that reconciles low subsidence over a high-temperature, high-volume plume source is a scenario in which plateau subsidence is the superposition of (1) subsidence due to the cooling of the plume source, and (2) uplift due to prolonged crustal growth in the form of magmatic underplating.
    [Show full text]
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • Master of Science Sustainable Development Semester – 1 Paper
    Master of Science Sustainable Development Semester – 1 Paper No Subject Name Contents of Syllabi -Brundtland Commission/ Word -Commission on Environment and Development. -What is Sustainable Development? -What is Sustainability? -History of Sustainability. -Sustainability Measurement. -Carrying Capacity. -Water Crisis. -Land Use Management. -Forestry Development. -Ecoforestry. -Sustainable Agriculture. -Extinction. GLOBAL SUSTAINABLE -Sustainable Energy. Paper-I DEVELOPMENT I -Water Resources. -Sustainability Science. -Education for Sustainable Development. -Maximum Sustainable Yield. -Sustainable Forest Management. -Susainopreneurship. -Sustainable Procurement. -Sustainable Business. -Sustainable National Income. -Sustainable Transport. -Sustainable Tourism. -Sustainable Design. -Sustainable Urban Infrastructure. Master of Science Sustainable Development -What is Biodiversity? -Measurement of Biodiversity. -Species Richness. -Shannon Index. -2010 Biodiversity Indicators- Partnership. -Evolution. -Evolutionary Thought. -How does Evolution Occur? -Timeline of Evolution. BIODIVERSITY -Social Effect of Evolutionary Theory. Paper-II CONSERVATION & -Objections of Evolution. MANAGEMENT I -Population Genetics. -Genetics. -Heredity. -Mutation. -Molecular Evolution. -Genetic Recombination. -Sexual Reproduction. -Gene Flow. -Hybrid. -What is Energy? -History of Energy. -Timeline of Thermodynamics. -Units of Energy. -Potential Energy. -Elastic Energy. -Kinetic Energy. -Internal Energy. -Electromagnetism. -Electricity. GLOBAL ENERGY POLICIES Paper-III
    [Show full text]
  • Dubai 2020: Dreamscapes, Mega Malls and Spaces of Post-Modernity
    Dubai 2020: Dreamscapes, Mega Malls and Spaces of Post-Modernity Dubai’s hosting of the 2020 Expo further authenticates its status as an example of an emerging Arab city that displays modernity through sequences of fragmented urban- scapes, and introvert spaces. The 2020 Expo is expected to reinforce the image of Dubai as a city of hybrid architectures and new forms of urbanism, marked by technologically advanced infrastructural systems. This paper revisits Dubai’s spaces of the spectacle such as the Burj Khalifa and themed mega malls, to highlight the power of these spaces of repre- sentation in shaping Dubai’s image and identity. INTRODUCTION MOHAMED EL AMROUSI Initially, a port city with an Indo-Persian mercantile community, Dubai’s devel- Abu Dhabi University opment along the Creek or Khor Dubai shaped a unique form of city that is con- stantly reinventing itself. Its historic adobe courtyard houses, with traditional PAOLO CARATELLI wind towers-barjeel sprawling along the Dubai Creek have been fully restored Abu Dhabi University to become heritage houses and museums, while their essential architectural vocabulary has been dismembered and re-membered as a simulacra in high-end SADEKA SHAKOUR resorts such as Madinat Jumeirah, the Miraj Hotel and Bab Al-Shams. Dubai’s Abu Dhabi University interest to make headlines of the international media fostered major investment in an endless vocabulary of forms and fragments to create architectural specta- cles. Contemporary Dubai is experienced through symbolic imprints of multiple policies framed within an urban context to project an image of a city offers luxu- rious dreamscapes, assembled in discontinued urban centers.
    [Show full text]
  • British Virgin Islands
    British Virgin Islands Clive Petrovic, Esther Georges and Nancy Woodfield Andy McGowan Great Tobago General introduction The British Virgin Islands comprise more than 60 islands, and the Virgin Islands. These include the globally cays and rocks, with a total land area of approximately 58 threatened Cordia rupicola (CR), Maytenus cymosa (EN) and square miles (150 square km). This archipelago is located Acacia anegadensis (CR). on the Puerto Rican Bank in the north-east Caribbean at A quarter of the 24 reptiles and amphibians identified are approximately 18˚N and 64˚W. The islands once formed a endemic, including the Anegada Rock Iguana Cyclura continuous land mass with the US Virgin Islands and pinguis (CR), which is now restricted to Anegada. Other Puerto Rico, and were isolated only in relatively recent endemics include Anolis ernestwilliamsii, Eleutherodactylus geologic time. With the exception of the limestone island of schwartzi, the Anegada Ground Snake Alsophis portoricensis Anegada, the islands are volcanic in origin and are mostly anegadae, the Virgin Gorda Gecko Sphaerodactylus steep-sided with rugged topographic features and little flat parthenopian, the Virgin Gorda Worm Snake Typlops richardi land, surrounded by coral reefs. naugus, and the Anegada Worm Snake Typlops richardi Situated at the eastern end of the Greater Antilles chain, the catapontus. Other globally threatened reptiles within the islands experience a dry sub-tropical climate dominated by BVI include the Anolis roosevelti (CR) and Epicrates monensis the prevailing north-east trade winds. Maximum summer granti (EN). temperatures reach 31˚C; minimum winter temperatures Habitat alteration during the plantation era and the are 19˚C, and there is an average rainfall of 700 mm per introduction of invasive alien species has had major year with seasonal hurricane events.
    [Show full text]
  • Table 1 Comprehensive International Points List
    Table 1 Comprehensive International Points List FCC ITU-T Country Region Dialing FIPS Comments, including other 1 Code Plan Code names commonly used Abu Dhabi 5 971 TC include with United Arab Emirates Aden 5 967 YE include with Yemen Admiralty Islands 7 675 PP include with Papua New Guinea (Bismarck Arch'p'go.) Afars and Assas 1 253 DJ Report as 'Djibouti' Afghanistan 2 93 AF Ajman 5 971 TC include with United Arab Emirates Akrotiri Sovereign Base Area 9 44 AX include with United Kingdom Al Fujayrah 5 971 TC include with United Arab Emirates Aland 9 358 FI Report as 'Finland' Albania 4 355 AL Alderney 9 44 GK Guernsey (Channel Islands) Algeria 1 213 AG Almahrah 5 967 YE include with Yemen Andaman Islands 2 91 IN include with India Andorra 9 376 AN Anegada Islands 3 1 VI include with Virgin Islands, British Angola 1 244 AO Anguilla 3 1 AV Dependent territory of United Kingdom Antarctica 10 672 AY Includes Scott & Casey U.S. bases Antigua 3 1 AC Report as 'Antigua and Barbuda' Antigua and Barbuda 3 1 AC Antipodes Islands 7 64 NZ include with New Zealand Argentina 8 54 AR Armenia 4 374 AM Aruba 3 297 AA Part of the Netherlands realm Ascension Island 1 247 SH Ashmore and Cartier Islands 7 61 AT include with Australia Atafu Atoll 7 690 TL include with New Zealand (Tokelau) Auckland Islands 7 64 NZ include with New Zealand Australia 7 61 AS Australian External Territories 7 672 AS include with Australia Austria 9 43 AU Azerbaijan 4 994 AJ Azores 9 351 PO include with Portugal Bahamas, The 3 1 BF Bahrain 5 973 BA Balearic Islands 9 34 SP include
    [Show full text]
  • UK Overseas Territories
    INFORMATION PAPER United Kingdom Overseas Territories - Toponymic Information United Kingdom Overseas Territories (UKOTs), also known as British Overseas Territories (BOTs), have constitutional and historical links with the United Kingdom, but do not form part of the United Kingdom itself. The Queen is the Head of State of all the UKOTs, and she is represented by a Governor or Commissioner (apart from the UK Sovereign Base Areas that are administered by MOD). Each Territory has its own Constitution, its own Government and its own local laws. The 14 territories are: Anguilla; Bermuda; British Antarctic Territory (BAT); British Indian Ocean Territory (BIOT); British Virgin Islands; Cayman Islands; Falkland Islands; Gibraltar; Montserrat; Pitcairn, Henderson, Ducie and Oeno Islands; Saint Helena, Ascension and Tristan da Cunha; South Georgia and the South Sandwich Islands; Turks and Caicos Islands; UK Sovereign Base Areas. PCGN recommend the term ‘British Overseas Territory Capital’ for the administrative centres of UKOTs. Production of mapping over the UKOTs does not take place systematically in the UK. Maps produced by the relevant territory, preferably by official bodies such as the local government or tourism authority, should be used for current geographical names. National government websites could also be used as an additional reference. Additionally, FCDO and MOD briefing maps may be used as a source for names in UKOTs. See the FCDO White Paper for more information about the UKOTs. ANGUILLA The territory, situated in the Caribbean, consists of the main island of Anguilla plus some smaller, mostly uninhabited islands. It is separated from the island of Saint Martin (split between Saint-Martin (France) and Sint Maarten (Netherlands)), 17km to the south, by the Anguilla Channel.
    [Show full text]
  • ISO Country Codes
    COUNTRY SHORT NAME DESCRIPTION CODE AD Andorra Principality of Andorra AE United Arab Emirates United Arab Emirates AF Afghanistan The Transitional Islamic State of Afghanistan AG Antigua and Barbuda Antigua and Barbuda (includes Redonda Island) AI Anguilla Anguilla AL Albania Republic of Albania AM Armenia Republic of Armenia Netherlands Antilles (includes Bonaire, Curacao, AN Netherlands Antilles Saba, St. Eustatius, and Southern St. Martin) AO Angola Republic of Angola (includes Cabinda) AQ Antarctica Territory south of 60 degrees south latitude AR Argentina Argentine Republic America Samoa (principal island Tutuila and AS American Samoa includes Swain's Island) AT Austria Republic of Austria Australia (includes Lord Howe Island, Macquarie Islands, Ashmore Islands and Cartier Island, and Coral Sea Islands are Australian external AU Australia territories) AW Aruba Aruba AX Aland Islands Aland Islands AZ Azerbaijan Republic of Azerbaijan BA Bosnia and Herzegovina Bosnia and Herzegovina BB Barbados Barbados BD Bangladesh People's Republic of Bangladesh BE Belgium Kingdom of Belgium BF Burkina Faso Burkina Faso BG Bulgaria Republic of Bulgaria BH Bahrain Kingdom of Bahrain BI Burundi Republic of Burundi BJ Benin Republic of Benin BL Saint Barthelemy Saint Barthelemy BM Bermuda Bermuda BN Brunei Darussalam Brunei Darussalam BO Bolivia Republic of Bolivia Federative Republic of Brazil (includes Fernando de Noronha Island, Martim Vaz Islands, and BR Brazil Trindade Island) BS Bahamas Commonwealth of the Bahamas BT Bhutan Kingdom of Bhutan
    [Show full text]
  • 3.16 Oceanic Plateaus A.C.Kerr Cardiffuniversity,Wales,UK
    3.16 Oceanic Plateaus A.C.Kerr CardiffUniversity,Wales,UK 3.16.1 INTRODUCTION 537 3.16.2 FORMATION OF OCEANIC PLATEAUS 539 3.16.3 PRESERVATIONOFOCEANIC PLATEAUS 540 3.16.4GEOCHEMISTRY OF CRETACEOUSOCEANICPLATEAUS 540 3.16.4.1 GeneralChemicalCharacteristics 540 3.16.4.2 MantlePlumeSource Regions ofOceanic Plateaus 541 3.16.4.3 Caribbean–ColombianOceanic Plateau(, 90 Ma) 544 3.16.4.4OntongJavaPlateau(, 122 and , 90 Ma) 548 3.16.5THE INFLUENCE OF CONTINENTALCRUST ON OCEANIC PLATEAUS 549 3.16.5.1 The NorthAtlantic Igneous Province ( , 60 Ma to Present Day) 549 3.16.5.2 The KerguelenIgneous Province ( , 133 Ma to Present Day) 550 3.16.6 IDENTIFICATION OF OCEANIC PLATEAUS IN THE GEOLOGICAL RECORD 551 3.16.6.1 Diagnostic FeaturesofOceanic Plateaus 552 3.16.6.2 Mafic Triassic Accreted Terranesinthe NorthAmericanCordillera 553 3.16.6.3 Carboniferous to CretaceousAccreted Oceanic Plateaus inJapan 554 3.16.7 PRECAMBRIAN OCEANICPLATEAUS 556 3.16.8ENVIRONMENTAL IMPACT OF OCEANICPLATEAU FORMATION557 3.16.8.1 Cenomanian–TuronianBoundary (CTB)Extinction Event 558 3.16.8.2 LinksbetweenCTB Oceanic PlateauVolcanism andEnvironmentalPerturbation 558 3.16.9 CONCLUDING STATEMENTS 560 REFERENCES 561 3.16.1 INTRODUCTION knowledge ofthe oceanbasins hasimproved over the last 25years,many moreoceanic plateaus Although the existence oflarge continentalflood havebeenidentified (Figure1).Coffinand basalt provinceshasbeenknownfor some Eldholm (1992) introduced the term “large igneous considerabletime, e.g.,Holmes(1918),the provinces” (LIPs) asageneric term encompassing recognition thatsimilarfloodbasalt provinces oceanic plateaus,continentalfloodbasalt alsoexist belowthe oceans isrelatively recent. In provinces,andthoseprovinceswhich form at the early 1970s increasingamounts ofevidence the continent–oceanboundary (volcanic rifted fromseismic reflection andrefraction studies margins).
    [Show full text]
  • From Podes to Antipodes: New Dimensions in Mapping Global Time, Cost, and Distance
    From Podes to Antipodes: New Dimensions in Mapping Global Time, Cost, and Distance by Matthew A. Zook* and Stanley D. Brunn** Department of Geography University of Kentucky, Lexington, KY 40506-0027 *[email protected] **[email protected] Paper prepared for Specialist Workshop on Globalization in the World-System: Mapping Change over Time University of California, Riverside February 7-8, 2004 DRAFT – DRAFT - DRAFT – DRAFT - DRAFT - DRAFT Do not distribute or reproduce DRAFT – DRAFT - DRAFT – DRAFT - DRAFT - DRAFT Table of Contents Thinking about Time, Space and Distance ................................................................................. 2 Representations of Time, Space and Distance............................................................................ 3 Thinking about and Representing Global Air Travel............................................................... 5 Description of the Data and its Generation................................................................................ 6 Data Analysis................................................................................................................................. 8 Summation of Physical, Cost and Time Distance....................................................................... 9 Explaining Cost and Time Distance ......................................................................................... 10 Representing Physical, Cost and Time Distance ...................................................................... 11 Conclusions and Future Directions ..........................................................................................
    [Show full text]
  • S41598-020-76691-1 1 Vol.:(0123456789)
    www.nature.com/scientificreports OPEN Rifting of the oceanic Azores Plateau with episodic volcanic activity B. Storch1*, K. M. Haase1, R. H. W. Romer1, C. Beier1,2 & A. A. P. Koppers3 Extension of the Azores Plateau along the Terceira Rift exposes a lava sequence on the steep northern fank of the Hirondelle Basin. Unlike typical tholeiitic basalts of oceanic plateaus, the 1.2 km vertical submarine stratigraphic profle reveals two successive compositionally distinct basanitic to alkali basaltic eruptive units. The lower unit is volumetrically more extensive with ~ 1060 m of the crustal profle forming between ~ 2.02 and ~ 1.66 Ma, followed by a second unit erupting the uppermost ~ 30 m of lavas in ~ 100 kyrs. The age of ~ 1.56 Ma of the youngest in-situ sample at the top of the profle implies that the 35 km-wide Hirondelle Basin opened after this time along normal faults. This rifting phase was followed by alkaline volcanism at D. João de Castro seamount in the basin center indicating episodic volcanic activity along the Terceira Rift. The mantle source compositions of the two lava units change towards less radiogenic Nd, Hf, and Pb isotope ratios. A change to less SiO2-undersaturated magmas may indicate increasing degrees of partial melting beneath D. João de Castro seamount, possibly caused by lithospheric thinning within the past 1.5 million years. Our results suggest that rifting of oceanic lithosphere alternates between magmatically and tectonically dominated phases. Oceanic plateaus with a crustal thickness to 30 km cover large areas in the oceans and these bathymetric swells afect oceanic currents and marine life 1,2.
    [Show full text]
  • Active Continental Margin
    Encyclopedia of Marine Geosciences DOI 10.1007/978-94-007-6644-0_102-2 # Springer Science+Business Media Dordrecht 2014 Active Continental Margin Serge Lallemand* Géosciences Montpellier, University of Montpellier, Montpellier, France Synonyms Convergent boundary; Convergent margin; Destructive margin; Ocean-continent subduction; Oceanic subduction zone; Subduction zone Definition An active continental margin refers to the submerged edge of a continent overriding an oceanic lithosphere at a convergent plate boundary by opposition with a passive continental margin which is the remaining scar at the edge of a continent following continental break-up. The term “active” stresses the importance of the tectonic activity (seismicity, volcanism, mountain building) associated with plate convergence along that boundary. Today, people typically refer to a “subduction zone” rather than an “active margin.” Generalities Active continental margins, i.e., when an oceanic plate subducts beneath a continent, represent about two-thirds of the modern convergent margins. Their cumulated length has been estimated to 45,000 km (Lallemand et al., 2005). Most of them are located in the circum-Pacific (Japan, Kurils, Aleutians, and North, Middle, and South America), Southeast Asia (Ryukyus, Philippines, New Guinea), Indian Ocean (Java, Sumatra, Andaman, Makran), Mediterranean region (Aegea, Cala- bria), or Antilles. They are generally “active” over tens (Tonga, Mariana) or hundreds (Japan, South America) of millions of years. This longevity has consequences on their internal structure, especially in terms of continental growth by tectonic accretion of oceanic terranes, or by arc magmatism, but also sometimes in terms of continental consumption by tectonic erosion. Morphology A continental margin generally extends from the coast down to the abyssal plain (see Fig.
    [Show full text]