Beneficial Effects of Fermented Soybean Through Ppars Activation in Metabolic Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Beneficial Effects of Fermented Soybean Through Ppars Activation in Metabolic Syndrome ISSN 0377-9556 (PRINT) ISSN 2383-9457 (ONLINE) 약학회지 제63권 제5호 259~267 (2019) Yakhak Hoeji Vol. 63, No. 5 DOI 10.17480/psk.2019.63.5.259 Review Beneficial Effects of Fermented Soybean through PPARs Activation in Metabolic Syndrome Radha Arulkumar*, EunJin Bang**, Sang-Gyun Noh*, Hee Jin Jung***, Dae Hyun Kim***, Takako Yokozawa****, and Hae Young Chung*,**,***,# *Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University **College of Pharmacy, Pusan National University ***Longevity life Science and Technology Institutes, Pusan National University ****Graduate School of Science and Engineering for Research, University of Toyama (Received September 17, 2019; Revised October 11, 2019; Accepted October 14, 2019) Abstract Fermented soybean is an important fermented soybean food in Korea as it has many health benefits. The phytochemicals that are modified and concentrated by fermentation with Bacillus subtilis are isoflavone aglycones, flavonols, and gallic acid, which were produced by the activity of β-glucosidase and esterase. On the other hand, isoflavone glycosides and flavanol gallates were decreased. It possesses various biological activities such as anti-oxidative, anti-microbial, anti-cancer, anti-diabetic and neuroprotective effects. Therefore, recent research has paid great attention to fermented soy food products to improve human health. We performed in silico molecular docking simulation of increased phytochemical components during soybean fermentation for peroxisome proliferator-activated receptors (PPARs), which is a well-known nuclear receptor family for preventive roles in metabolic and inflammatory diseases. The results demonstrated that components such as epicatechin, daidzein, catechin, and genistein showed strong binding affinity with PPARs, suggesting their potential therapeutic effects. In this review, we highlighted the recent studies and possible action mechanisms of phytochemical extracts during the fermentation process of soybean and their potential health benefits to humans, especially for the treatment of the metabolic syndrome. Keywords Fermented soybean, Bacillus subtilis, phytochemicals, in silico docking simulation, PPARs Introduction contribute to enhanced biological properties of fermented soybeans as well as their nutritional contents.5) The phytochemicals contests Soy foods are one of the most common beneficial health foods are modified by fermentation by Bacillus subtilis (B. subtilis) with an exceptional source of essential nutrients provided in 100 converting soybean with greater healthy properties. For example, grams, serving high contents of the daily nutrition value, in these fermented soybean products include soybean cake (meju), particular, for protein (36%), dietary fiber (37%), iron (121%), soybean paste (Cheonggukjang), soybean sauce (kanjang).6) manganese (120%), phosphorus (101%) and several B vitamins, Fermented soybean is a popular fermented soybean, which is including folate (94%). High contents exist for vitamin K, used as one of the major dietary sources in Korea. Fermented magnesium, zinc and potassium with several biological properties soybean is generally considered to be a healthy consumption as it contains various phytochemicals such as isoflavones, saponins, product as is rich in sources of vitamins, lipids, protein, phytic acid, catechins, and trypsin inhibitors.1-3) Commercially, hydrolyzed peptides and other diverse nutrients.7) It possesses fermentation is the enzymatic decomposition process by microbes beneficial pharmacological characteristics and exerts anti-oxidative, used to increase biologically active compounds that potentially anti-microbial, anti-cancer and anti-diabetic activities.3,8) In addition, benefit human health.4) Previous reports suggest that microbes can it has the capability to modulate cholesterol in the human physiological system. It also has been demonstrated that fermented # soybeans consumption significantly correlate with a reduction of Corresponding author 9) Hae Young Chung, Department of Pharmacy, College of Pharmacy, the occurrence rate of breast and prostate cancer. Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong- Peroxisome proliferator-activated receptors (PPARs), a nuclear gu, Busan, 46241, Republic of Korea Tel: +82-51-510-2814; Fax: +82-51-518-2821 receptor protein family, is well-known to play an important role in E-mail: [email protected] lipid and glucose homeostasis.10) Therefore, PPARs targeting 259 260 Radha Arulkumar et al. molecules are developed as therapeutic target molecules to treat Biotransformation during Soybean diseases such as metabolic syndrome and inflammatory diseases. Fermentation We performed in silico docking simulation of PPARs for fermented soybean extracts for their potential action mechanism. The previous report suggests that phytochemical contents such And we highlight the nutritional contents and active compounds as isoflavones, flavonols, and phenolic acids are changed during from fermented soybean and elaborate on possible action the process of fermentation of soybean by using B. subtilis CS90.27) mechanisms through PPARs activation for health benefits to Among phytochemical constituents, 15 isoflavone, flavonols, and human beings. phenolic acids either increased or decreased during fermentation. Specifically, the levels of isoflavone aglycones, and flavonols, and Roles of PPARs in Diseases gallic acid increased significantly, while the isoflavone glycosides, malonylglycosides, and flavonol gallates decreased (Table 1). In The PPARs are a subfamily of three transcription factors that addition, garlic affected the soybean fermentation by B. belong to the superfamily of nuclear hormone receptors.11) PPAR amyloliquefaciens MJ1-4. It altered the total amount of phenolic subfamily consists of three members: PPARα, PPARβ/δ, and and 12 isoflavones or isoflavone glycodise, including daidzin, PPARγ.11) PPARs regulates the expression of a large number of glycitin, genistin, malonyldaidzin, malonylglycitin, acetyldaidzin, genes involved in metabolic homeostasis, lipid, glucose, and malonylgenistin, acetylglycitin, daidzein, glycitein and genistein, energy metabolism, adipogenesis, and inflammation.12-14) As which correlated with the higher anti-oxidative activity.3) Phytochemicals PPARs regulate a large number of genes and metabolic pathways, like isoflavones, flavonols, and phenolic acids have shown many its involvement in the pathogenesis is implicated in diseases such potential health benefits. It is well established that isoflavones as metabolic syndrome, type 2 diabetes mellitus (T2DM), have been reported to prevent atherosclerosis, osteoporosis, and nonalcoholic fatty liver disease (NAFLD), and cardiovascular postmenopausal syndrome.28,29) Flavonols act as excellent antioxidants disease.15-17) Therefore, they represent critical molecular targets for and chelating agents.30) Moreover, phenolic acids, such as the the development of new therapeutic drugs to treat these metabolic gallic acid and its derivatives are demonstrated to have anti- diseases. oxidative and anti-carcinogenic activities and exert various other PPARα is activated by ligand and plays a role as a nuclear health benefits.31,32) transcriptional factor.18,19) PPARα particularly regulates the expression of genes involved in fatty acid beta-oxidation and acts as an Biological Importance of Fermented important regulator of energy homeostasis.20) PPARγ contributes to Soybean the regulation of adipogenesis, lipid and glucose homeostasis and other pathophysiological processes.21) Commercial medications such As previously mentioned, fermented soybean has excellent as pioglitazone and rosiglitazone function as insulin sensitizers health benefits as it is a rich source of proteins, amino acids, and enhance insulin action and improve hyperglycemia in patients vitamins, minerals, and lipids. Fermented soybean’s characteristic with T2DM.22,23) Likewise, several PPARγ agonists have been fibrous texture comes from the release of γ-aminobutyric acid shown to effectively lower increased plasma free fatty acid levels, during fermentation.33) It has exhibited various biological activities improve excessive lipid accumulation in peripheral tissues such as and health benefits (Fig. 1). For example, it showed a potent in liver, skeletal muscle, heart, and hyperinsulinemia/insulin resistance vitro anti-cancer effect by inhibiting cancer cell growth and and modulate the expression of adipokines and inflammatory inducing apoptosis. Recently, Go et al.34) reported that fermented cytokines that impact hepatic and muscle metabolism and whole- soybean produced by mixed culture growth of both B. subtilis body insulin sensitivity.24,25) In addition, pharmacological modulation MC31 and Lactobacillus sakei 383 has exhibited neuroprotective of the PPARα/δ nuclear receptors by elafibranor, a dual agonist of effects in trimethyltin (TMT)-induced cognitive defects mice. The PPARα/δ, improved the histological resolution of non-alcoholic neuroprotective effects of fermented soybean were the result of steatohepatitis (NASH), and the cardiometabolic risk profile.26) inducing the release of nerve growth factor (NGF) and the Currently, elafibranor is on phase 3 trials in the target population promotion of superoxide dismutase (SOD) activity as well as of patients with moderate to severe symptoms. Therefore, PPARs inhibition of acetylcholinesterase (AChE) activity.34) Among are an important therapeutic target for intervention
Recommended publications
  • Transcriptional Regulation of the Equol Biosynthesis Gene Cluster in Adlercreutzia Equolifaciens DSM19450T
    Article Transcriptional Regulation of the Equol Biosynthesis Gene Cluster in Adlercreutzia equolifaciens DSM19450T Ana Belén Flórez 1,*, Lucía Vázquez 1, Javier Rodríguez 1, Begoña Redruello 2 and Baltasar Mayo 1 1 Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain; [email protected] (L.V.); [email protected] (J.R.); [email protected] (B.M.) 2 Servicios Científico-Técnicos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-985-89-21-31 Received: 25 February 2019; Accepted: 30 April 2019; Published: 30 April 2019 Abstract: Given the emerging evidence of equol’s benefit to human health, understanding its synthesis and regulation in equol-producing bacteria is of paramount importance. Adlercreutzia equolifaciens DSM19450T is a human intestinal bacterium —for which the whole genome sequence is publicly available— that produces equol from the daidzein isoflavone. In the present work, daidzein (between 50 to 200 μM) was completely metabolized by cultures of A. equolifaciens DSM19450T after 10 h of incubation. However, only about one third of the added isoflavone was transformed into dihydrodaidzein and then into equol. Transcriptional analysis of the ORFs and intergenic regions of the bacterium’s equol gene cluster was therefore undertaken using RT-PCR and RT-qPCR techniques with the aim of identifying the genetic elements of equol biosynthesis and its regulation mechanisms. Compared to controls cultured without daidzein, the expression of all 13 contiguous genes in the equol cluster was enhanced in the presence of the isoflavone.
    [Show full text]
  • Great Food, Great Stories from Korea
    GREAT FOOD, GREAT STORIE FOOD, GREAT GREAT A Tableau of a Diamond Wedding Anniversary GOVERNMENT PUBLICATIONS This is a picture of an older couple from the 18th century repeating their wedding ceremony in celebration of their 60th anniversary. REGISTRATION NUMBER This painting vividly depicts a tableau in which their children offer up 11-1541000-001295-01 a cup of drink, wishing them health and longevity. The authorship of the painting is unknown, and the painting is currently housed in the National Museum of Korea. Designed to help foreigners understand Korean cuisine more easily and with greater accuracy, our <Korean Menu Guide> contains information on 154 Korean dishes in 10 languages. S <Korean Restaurant Guide 2011-Tokyo> introduces 34 excellent F Korean restaurants in the Greater Tokyo Area. ROM KOREA GREAT FOOD, GREAT STORIES FROM KOREA The Korean Food Foundation is a specialized GREAT FOOD, GREAT STORIES private organization that searches for new This book tells the many stories of Korean food, the rich flavors that have evolved generation dishes and conducts research on Korean cuisine after generation, meal after meal, for over several millennia on the Korean peninsula. in order to introduce Korean food and culinary A single dish usually leads to the creation of another through the expansion of time and space, FROM KOREA culture to the world, and support related making it impossible to count the exact number of dishes in the Korean cuisine. So, for this content development and marketing. <Korean Restaurant Guide 2011-Western Europe> (5 volumes in total) book, we have only included a selection of a hundred or so of the most representative.
    [Show full text]
  • Distribution of Isoflavones and Coumestrol in Fermented Miso and Edible Soybean Sprouts Gwendolyn Kay Buseman Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1996 Distribution of isoflavones and coumestrol in fermented miso and edible soybean sprouts Gwendolyn Kay Buseman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Buseman, Gwendolyn Kay, "Distribution of isoflavones and coumestrol in fermented miso and edible soybean sprouts" (1996). Retrospective Theses and Dissertations. 18032. https://lib.dr.iastate.edu/rtd/18032 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Distribution of isoflavones and coumestrol in fermented miso and edible soybean sprouts by Gwendolyn Kay Buseman A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department Food Science and Human Nutrition Major: Food Science and Technology Major Professor: Patricia A. Murphy Iowa State University Ames, Iowa 1996 ii Graduate College Iowa State University This is to certify that the Master's thesis of Gwendolyn Kay Buseman has met the thesis requirements of Iowa State University Signatures have been redacted for privacy iii TABLE OF CONTENTS LIST OF FIGURES v LIST OF TABLES
    [Show full text]
  • Health Benefits of Fermented Foods and Beverages
    Food & Culinary Science TAMANG Health Benefits of Fermented Foods and Beverages Health Benefits Health Benets of Fermented Foods and Beverages discusses the functionality and myriad health benets of fermented foods and beverages of the world. It examines health-promoting and therapeutic properties, covering the molecular process of fermentation and the resulting benet to nutritional value and long-term health. Exploring a range of fermented food Health Benefits products from yogurt to tempeh to wine, the book details probiotic activity, degradation of anti-nutritive compounds, and the conversion of substrates into consumable products with enhanced avor and aroma. The diversity of functional microorganisms in fermented foods and beverages of of consists of bacteria, yeasts, and fungi. The most remarkable aspect is the Fermented Foods biological functions and the enhanced health benets due to functional Fermented Foods microorganisms associated with them. Written by a host of international experts, the book highlights the microorganisms in fermented foods and beverages of the world. It collates information based on research articles and and review papers investigating the different health-promoting benets Beverages such as antioxidant functions, allergic reactions suppression, and overall digestion improvement. Possible health benets of fermented foods and beverages include preven- E D I T E D B Y tion of cardiovascular disease, cancer, hepatic disease, gastrointestinal disorders and inammatory bowel disease, hypertension, thrombosis, osteoporosis, allergic reactions, and diabetes. In addition, increasing the JYOTI PRAKASH TAMANG synthesis of nutrient, reducing obesity, increasing immunity, and alleviating lactose intolerance as well as anti-aging and therapeutic values/medicinal and values are among health-related effects attributed to fermented foods.
    [Show full text]
  • Redalyc.Chemical Composition of Tempeh from Soybean Cultivars
    Ciência e Tecnologia de Alimentos ISSN: 0101-2061 [email protected] Sociedade Brasileira de Ciência e Tecnologia de Alimentos Brasil Furlan BAVIA, Ana Carla; da SILVA, Carlos Eduardo; Pires FERREIRA, Márcia; SANTOS LEITE, Rodrigo; Gontijo MANDARINO, José Marcos; Concórdia CARRÃO-PANIZZI, Mercedes Chemical composition of tempeh from soybean cultivars specially developed for human consumption Ciência e Tecnologia de Alimentos, vol. 32, núm. 3, julio-septiembre, 2012, pp. 613-620 Sociedade Brasileira de Ciência e Tecnologia de Alimentos Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=395940113028 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciência e Tecnologia de Alimentos ISSN 0101-2061 Chemical composition of tempeh from soybean cultivars specially developed for human consumption Original Composição química de tempeh de cultivares de soja especialmente desenvolvidas para o consumo humano Ana Carla Furlan BAVIA1, Carlos Eduardo da SILVA1, Márcia Pires FERREIRA2, Rodrigo SANTOS LEITE1, José Marcos Gontijo MANDARINO1, Mercedes Concórdia CARRÃO-PANIZZI3* Abstract Tempeh is a food obtained by fermentation of soybean grains by the fungus Rizophus oligosporus. It is a traditional Indonesian food that presents benefits for human health protecting against diarrhea and chronic diseases. Tempeh processing includes dehulling, cooking, inoculation, and fermentation. In this study, chemical characteristics of tempeh prepared with soybean cultivars specially developed for human consumption (BRS 216, BRS 232, BRS 257, and BRS 267) were investigated. Soybean grains and tempeh obtained from these cultivars were analyzed for oil, protein, antinutrional factors, and isoflavone content.
    [Show full text]
  • Determination of Isoflavones in Soybean by LC/MS/MS
    Application Note Food Testing & Agriculture Determination of Isoflavones in Soybean by LC/MS/MS Authors Abstract Maria Carolina Blassioli‑Moraes and Mirian This Application Note describes a sensitive and reliable method for Fernandes Furtado Michereff the determination of seven isoflavones in soybean samples by liquid Embrapa Recursos Genéticos chromatography/tandem mass spectrometry (LC/MS/MS). The best separation of e Biotecnologia, daidzein, genistein, glycitein, daidzin, genistin, genistein, and rutin was obtained on a Brasília, Brazil reversed-phase C18 column (Agilent ZORBAX Eclipse Plus C18, 2.1 mm × 100 mm, 1.8 µm, p/n 959758-902) under gradient elution. The proposed method is simple, Claudimir Lucio do Lago fast, and presented a linear calibration with correlation coefficients greater than Department of Fundamental 0.998. The limits of detection (LODs) and limits of quantification (LOQs), based on Chemistry, the signal-to-noise ratio (S/N), were in the range of 0.7 to 6.7 and 2.3 to 22.5 ppb, Institute of Chemistry, respectively. The method was successfully used to determine isoflavones in University of São Paulo, Brazil soybean samples. Daniela Daniel Agilent Technologies, Inc. Introduction In addition, immunoassays are adopted seven isoflavones (daidzin, glycitin, to analyze isoflavones in food products rutin, genistin, daidzein, glycitein, Soybean (Glycine max) is a complex and biological samples. Each method and genistein) in soybean samples food matrix containing low starch, has its own advantages and limitations. using LC/MS/MS. Figure 1 shows the approximately 20 % oil, and 40 % This study develops and validates molecular structures of isoflavones high‑quality protein, in addition to a method for the determination of analyzed in this work.
    [Show full text]
  • Korean Traditional Food: Status, Prospects and Vision for Globalization
    KOREAN TRADITIONAL FOOD: STATUS, PROSPECTS AND VISION FOR GLOBALIZATION Dong-Hwa Shin Faculty of Biotechnology Chonbuk National University 664-14 Dukjin-Dong, Jeonju 561-756 Korea ABSTRACT This Bulletin describes the unique properties and diversity of Korean traditional food, as well as some prospects and directions for its future development as an industry. Traditional foods are prepared with the use of ingredients unique to a particular area and people. They are considered as historic food, and are transferred from generation to generation with some local variations. Korean traditional food can be classified based on the ingredients used: rice products as staple food, beverages, vegetables, fish, and fruits. Traditional foods using meat are very limited. Other classifications are based on production methods, such as steamed foods (almost all of the grain products), puffed foods, brined foods, and fermented foods. Traditional foods are used more as seasonal and banquet food or for religious ceremonies rather than as staple food, but it has become popular as a delicacy food in recent years. Korean traditional foods have not been given enough attention for a long time, but recent domestic consumption has gradually increased in view of people’s recognition and consciousness of such products as health foods. The food culture of Korea has also caught the interest of other countries through the export of traditional food. Traditional food has been developed on the basis of unique techniques from each country, and efforts to export them are now expanding. Hence, it is now considered a competitive product, what with its unique materials and production techniques.
    [Show full text]
  • Boasting the Food of the Eight Provinces
    Interesting Food Stories Boasting the Food of the Eight Provinces People usually say “Paldo Gangsan” to represent the eight regions that constitute the Korean Peninsula. These regions are, “Gyeonggi- do,” “Gangwon-do,” “Chungcheong-do,” “Jeolla-do,” “Gyeongsang-do,” “Hwanghae-do,” “Pyeongan-do,” “Hamgyeong-do,” and each has their own cultural distinctions. Now, shall we further explore the differences in the food among the eight regions? Seoul, Gyeonggi-do Seoul has long been the capital of Korea, a place for many noblemen who considered formality and stylishness to be important. The people of Seoul are often referred to as “ggakjaengi,” which means they are particularly difficult to please. Interestingly, the food they cook shows us much about the characteristics of the Seoul noblemen. Food cooked in Seoul is not too salty or overly spicy. The most famous products of the Gyeonggi area are Icheon rice, and “samgyetang (chicken broth with ginseng),” “bulgogi (barbecued beef),” “sinseonlo (brass chafing dish),” and “seolleongtang (beef soup with rice).” Chungcheong-do “Chungcheong-do” has smooth mountains and a gentle climate that probably accounts for the people's slow speaking style and firm personality. The people from other areas tend to make fun of the general slowness of the people of Chungcheong-do. “Chungcheong-do” dishes are not regionally distinctive, but they are clean, simple, and delicious. “Cheonggukjang (fast fermented soybean paste stew),” “dotorimuk (acorn jello),” and “hodugwaja (small walnut- flavored cake)” of Cheonan are the representative dishes of this area. Seafood such as shrimp, oyster, and crab are also seasonally provided from the Yellow Sea. Jeolla-do “Jeolla-do” has abundant crops and seafood compared to the other regions.
    [Show full text]
  • Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang
    International Journal of Molecular Sciences Review Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang Il-Sup Kim 1 , Cher-Won Hwang 2,*, Woong-Suk Yang 3,* and Cheorl-Ho Kim 4,5,* 1 Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea; [email protected] 2 Global Leadership School, Handong Global University, Pohang 37554, Korea 3 Nodaji Co., Ltd., Pohang 37927, Korea 4 Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon 16419, Korea 5 Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea * Correspondence: [email protected] (C.-W.H.); [email protected] (W.-S.Y.); [email protected] (C.-H.K.) Abstract: Cheonggukjang (CGJ, fermented soybean paste), a traditional Korean fermented dish, has recently emerged as a functional food that improves blood circulation and intestinal regulation. Considering that excessive consumption of refined salt is associated with increased incidence of gastric cancer, high blood pressure, and stroke in Koreans, consuming CGJ may be desirable, as it can be made without salt, unlike other pastes. Soybeans in CGJ are fermented by Bacillus strains (B. subtilis or B. licheniformis), Lactobacillus spp., Leuconostoc spp., and Enterococcus faecium, which weaken the activity of putrefactive bacteria in the intestines, act as antibacterial agents against Citation: Kim, I.-S.; Hwang, C.-W.; pathogens, and facilitate the excretion of harmful substances. Studies on CGJ have either focused on Yang, W.-S.; Kim, C.-H. Current Perspectives on the Physiological improving product quality or evaluating the bioactive substances contained in CGJ. The fermentation Activities of Fermented process of CGJ results in the production of enzymes and various physiologically active substances Soybean-Derived Cheonggukjang.
    [Show full text]
  • SUBMISSION to OBJECT to TERMS PROPOSED by the EUROPEAN UNION for PROTECTION AS GEOGRAPHICAL INDICATIONS in AUSTRALIA Submitter N
    SUBMISSION TO OBJECT TO TERMS PROPOSED BY THE EUROPEAN UNION FOR PROTECTION AS GEOGRAPHICAL INDICATIONS IN AUSTRALIA Submitter’s contact information Name: Shawna Morris Company represented, including ACN or ABN, if any: Consortium for Common Food Names (CCFN) Other representative: E-mail address: [email protected] Mailing address: 2107 Wilson Blvd., Suite 600, Arlington, VA, 22201, United States of America Phone number: +1 (703) 528-4818 EU GI name you are objecting to (please use a new form for each term objected to) MORTADELLA BOLOGNA Ground(s) of objection to the protection of the EU GI name (please tick all the grounds that apply) 1. The EU GI name is used in Australia as the common name for the relevant good. X (See details below regarding grounds for our objection based on this element.) 2. The EU GI name is used in Australia as the name of a plant variety or an animal breed. (Please provide any relevant information that shows the name is also a plant variety or animal breed, such as studies, articles, copies of websites or any other relevant information) 3. The EU GI name is identical to, or likely to cause confusion with a trade mark or geographical indication that is registered or the subject of a pending application in Australia. (Please include the details of the GI or the trade mark including the trade mark number) 4. The EU GI name is identical, or likely to cause confusion with, an unregistered trade mark or geographical indication that has acquired rights through use in Australia. (Please identify the trade mark or GI and provide information that demonstrates how it is being used in the Australian marketplace.) 5.
    [Show full text]
  • Extraction and Purification of Isoflavones from Korean Soybean and Soybean Paste
    HWAHAK KONGHAK Vol. 41, No. 5, October, 2003, pp. 612-616 † , 402-751 253 (2003 3 10 , 2003 7 28 !) Extraction and Purification of Isoflavones from Korean Soybean and Soybean Paste Kwang Jin Lee, Du Young Choi and Kyung Ho Row† Center for Advanced Bioseparation Technology and Department of Chemical Engineering,Inha University, 253, Yonghyun-dong, Nam-ku, Incheon 402-751, Korea (Received 10 March 2003; accepted 28 July 2003) isoflavones HPLC . !" # $ %& isoflavones ' ()* +,+- ./)01 . 60% ethanol 2$ 345 6 72' 15 µm 896 :; <= >?)@ AB +CD 5 . 5 +- '? * 24E 5%5F, genistin, daidzein, genistein* &GE 0.2 wt.%5H. I# J3 K LAMN isoflavones* &G5 B7 OP. Abstract − In this work, analytical and preparative HPLC systems were utilized to obtain isoflavones from Korean soybean and byproduct of soybean paste. The optimum operating conditions were experimentally determined to analyze and collect the isoflavones in the pretreated extract. The extraction efficiency was the most favorable at aqueous solution of 60% ethanol. Korean soybean was extracted by preparative column with 15 µm packings and linear gradient elution mode. Under these experimental conditions, the yield of solid extract was 5%, while the weight percentage of genistin, daidzein, and genistein was 0.2 wt%. The content of non-glucosides isoflavones in the fermented byproduct of soybean paste was remarkably higher than that in the Korean soybean extract. Key words: Isoflavones, Korean Soybean, Extraction, RP-HPLC 1. s]t 87[5], u vwx yz){k %|& } m7 8A [6]. yz){! ~M %<, d, q, fM ! 8 jk l Ev }, 8] g, ^ N6, ! "# $%& '() *' +, A,]z %;A[7]. ) AJ& $ -. /0 '( 12) 3 4567 89, : %; % Y( Y N S %;, ';) |;@]6 .& <= >?@7 8A[1-2].
    [Show full text]
  • Changes in Isoflavone Compositions of Soybean Foods During Cooking
    Food Sci. Technol. Res., 6 (4), 314–319, 2000 Changes in Isoflavone Compositions of Soybean Foods during Cooking Process Toshiya TODA,1,2 Akane SAKAMOTO,2 Tsutomu TAKAYANAGI1 and Koki YOKOTSUKA1 1The Institute of Enology and Viticulture, Yamanashi University, 13-1 Kitashin-1-chome, Kofu, Yamanashi 400-0005, Japan 2Fujicco Co., Ltd., 6-13-4 Minatojimanakamachi, Chuo-ku, Kobe 650-8558, Japan Received April 24, 2000; Accepted July 19, 2000 We evaluated the concentration and distribution of isoflavones in a total of 50 samples of soybean foods consumed daily in Japan by high-performance liquid chromatography (HPLC). A hierarchical cluster analysis using the mea- sured isoflavone distribution classified these foods into 6 clusters. Experiments of heat processing representing stan- dard commercial production processes of the foods clarified that each cluster was characterized by the effects of the heating method and temperature. Tofu, which is produced under mild heating conditions, showed similar isoflavone distribution to raw soybeans, having the highest proportion of 6≤-O-malonyl-␤-glucosides to total isoflavones, while soymilk, yuba, cooked soybean, and natto which are produced by comparatively stronger heat, showed a lower pro- portion of 6≤-O-malonyl-␤-glucosides and higher non-acylated-␤-glucosides. In the production of kinako by roasting, the proportion of 6≤-O-acetyl-␤-glucosides, generated by decarboxylation of 6≤-O-malonyl-␤-glucosides, increased. Miso and soy sauce had an increased proportion of aglycons due to a lengthy fermentation period. Abura-age which is produced by frying tofu showed lower 6≤-O-malonyl-␤-glucosides than tofu, and higher 6≤-O-acetyl-␤-glucosides. Keywords: isoflavones, soybean foods, cluster analysis, aglycons, ␤-glucosides, 6≤-O-malonyl-␤-glucosides, 6≤-O-acetyl-␤-glucosides One feature of the traditional Japanese diet is the daily con- Esaki et al., 1994).
    [Show full text]