The Assault on the Quintic Niels Henrik Abel

Total Page:16

File Type:pdf, Size:1020Kb

The Assault on the Quintic Niels Henrik Abel The Assault on the Quintic Niels Henrik Abel • Niels Henrick Abel was born in 1802 to a Luther Minister and the daughter of a shipping merchant. • He came from a long line of pastors; she was a beautiful woman with a passion for the finer things. Niels Henrick Abel • Poverty and alcoholism haunted the family; at the same time, famine haunted Norway. • Abel attended Cathedral school is Oslo and along with many other students was beaten by the mathematics teacher. Abel • Being with his friends and going to the theater became Abel’s salvation. • Bernt Michael Holmboe replaced the sadistic math teacher and recognized Abel’s talent. They remained friends throughout Abel’s life. Abel • During these high school years he thought he’s solved the general quintic. He submitted the proof and was asked to better explain it. In trying to do so, he found his mistake. Abel • His father died in 1820, making even worse the poverty that was to remain with him all his life. Somehow, in spite of this poverty, he entered the university in 1821. • During this time, two professors supported him, and even helped him obtain funds for travel to Denmark to meet other mathematicians. • During this trip he met his future fiancée Crelly Kemp; they were engaged in 1824. Abel • He wrote a proof that the quintic was not solvable by radicals in 1823. Understanding its importance, he wrote a very brief version of the proof and used it as a sort of “business card” to send to mathematicians. • The one he sent to Gauss was never opened, and was found among Gauss’s papers after his death. Abel • Through the efforts of his teachers in Norway, Abel received a travel grant in 1825. There was, unfortunately, no guarantee of support upon his return. • He was meant to go to Paris, to meet Cauchy, Legendre and others, but because his friends were going to Berlin he went there instead. • He met August Crelle, who founded a journal still in publication today. The first volume in 1826 included seven papers by Abel. Crelle also began working to secure Abel a teaching position in Berlin. • During this period of time a position came open at the university in Oslo, and Abel applied for it. He lost out to his friend Holmboe, and although it was a big disappointment to Abel they remained good friends. • In general, Abel spent a happy winter in Berlin in1825, with friends, parties and writing of mathematical papers. Abel • Abel made his trip to Paris in the late summer of 1826. He met Legendre and Cauchy, but their meetings were quite formal. They paid little attention to him, being absorbed in their own work and interests. • Abel continued to work by himself. He submitted a work on transcendental functions to the French Academy of Sciences that was mislaid by Cauchy and ignored by Legendre. • Eventually his money ran out and his health problems began. What turned out to be tuberculosis (although Abel never did admit it) was in its beginning stages. He returned to Berlin, where his health worsened. Abel • In May 1927, he went back to Oslo. He was given a very small stipend and eventually a substitute teaching job. He continued his work on Elliptic integrals. • During this period, his fame was beginning to spread in Europe. He spent the summer with Crelly, which was again a relatively happy respite. • He returned to Oslo in fall 1828. His income and health both declined. • Finally, on April 6, 1829 he died, with Crelly at his bedside. • Two days later, letter from Crelle arrived saying he had been offered a position in Berlin. Abel’s Mathematics • Proved that the general quintic equation could not be solved by radicals. Abel’s Mathematics • Abel also worked in the field of Elliptic Integrals. • Elliptic Integrals originally arose from attempts to find by calculus the arc length of an ellipse. Abel’s Mathematics • Today, we think of them as any function that can be expressed in the form: ௫ ௖ Where R is a rational function of its two arguments, P is a polynomial of degree 3 or 4 with no repeated roots, and c is a constant. Abel’s Mathematics • From the Encyclopedia Britannica: • [Abel’s paper] dealt with the sum of integrals of a given algebraic function. Abel's theorem states that any such sum can be expressed as a fixed number p of these integrals, with integration arguments that are algebraic functions of the original arguments. …Abel's theorem is a vast generalisation of Euler's relation for elliptic integrals. • This is the paper that Cauchy lost. Abel’s Mathematics • In 1828 Abel was shown a paper by Jacobi on transformations of elliptic integrals. Abel showed that Jacobi’s work followed from his own (from the lost manuscript) and published a second work in this area. • He had been working again on the algebraic solution of equations, with the aim of solving the problem of which equations were soluble by radicals (the problem which Galois solved a few years later). He put this to one side to compete with Jacobi in the theory of elliptic functions, quickly writing several papers on the topic. Abel’s Mathematics • 1n 1830 both Abel and Jacobi were awarded the Grand Prix for their work. • Of their work, Legendre said, “Through these works you two will be placed in the class of the foremost analysts of our times.” • Curiously enough, the original lost manuscript was found by Cauchy in 1830. It was printed in 1841, then vanished again to surface in 1952 in Florence. Abel’s Mathematics • After Abel's death unpublished work on the algebraic solution of equations was found. In fact in a letter Abel had written to Crelle on 18 October 1828 he gave the theorem: • If every three roots of an irreducible equation of prime degree are related to one another in such a way that one of them may be expressed rationally in terms of the other two, then the equation is soluble in radicals. Abel’s Mathematics • This result is essentially identical to one given by Galois in his famous memoir of 1830. Evariste Galois • Born 25 Oct 1811 in Bourg La Reine, near Paris. • Parents were well educated and taught Evariste Greek, Latin and religion at home. • During the last part of Napoleon’s reign. Evariste Galois • Entered Lycée of Louis‐ le‐Grand in 1823. Generally a good students, but had to repeat a year because his “rhetoric” was not up to standard. • In 1827, enrolled in his first mathematics class. Galois • He quickly lost interest in everything else. A director of the school wrote of this, • It is the passion for mathematics which dominates him, I think it would be best for him if his parents would allow him to study nothing but this, he is wasting his time here and does nothing but torment his teachers and overwhelm himself with punishments. Galois • Wanted to enter the École Polytechnique, partly for academic reasons and partly for political reasons. He (and his parents) were ardent Republicans and the Polytechnique had a strong student movement that drew Evariste’s interest. • Didn’t pass the entrance exam (likely because he concentrated more on mathematics than rhetoric). Galois • Continued to work on mathematics, having a paper published on continued fractions in April 1829. • In July 1929 his father hanged himself, probably as a result of a scandal involving his forged name on some libelous letters. • A few weeks later, Evariste sat for his second entrance exam for the École Polytechnique, and again failed. Galois • He resigned himself to entering the École Normale, and sat for his baccalaureate exams. He passed, doing well in mathematics, although his literature examiner said, • This is the only student who has answered me poorly, he knows absolutely nothing. I was told that this student has an extraordinary capacity for mathematics. This astonishes me greatly, for, after his examination, I believed him to have but little intelligence. Galois • He sent work to Cauchy on the solvability of equations, and then learned of Abel’s posthumously published work. At Cauchy’s suggestion, he submitted a work on the conditions under which equations were solvable by radicals in 1830. He also worked some on elliptic integrals, having seen Abel’s and Jacobi’s work, but learned that they received the prize without his work being considered (Fourier had lost it, then died). Galois • At about this time, Galois became involved in the revolution, for which he was expelled from the École Normale. He joined a republican arm of the militia, which was soon disbanded as a threat to the throne. • Late in 1830, he was arrested for making threats against the king, and held in prison for the length of his trial, but was acquitted. Galois • On Bastille Day of 1831 he was arrested for wearing the uniform of the Artillery of the National Guard, which was illegal. He was also carrying a loaded rifle, several pistols and a dagger. • He was sent back to prison. He tried to commit suicide but was prevented from doing so by the other prisoners. Galois • He also received word that his manuscript was rejected, although he was encouraged to write a more clear and complete account of his work. • He admitted to others while drunk in prison, “Do you know what I lack my friend? I confide it only to you: it is someone whom I can love and love only in spirit. I have lost my father and no one has ever replaced him, do you hear me...? Galois • He was transferred to a hotel because of a cholera outbreak, and there he fell in love with the resident physician’s daughter, Stephanie‐ Felice du Motel.
Recommended publications
  • EVARISTE GALOIS the Long Road to Galois CHAPTER 1 Babylon
    A radical life EVARISTE GALOIS The long road to Galois CHAPTER 1 Babylon How many miles to Babylon? Three score miles and ten. Can I get there by candle-light? Yes, and back again. If your heels are nimble and light, You may get there by candle-light.[ Babylon was the capital of Babylonia, an ancient kingdom occupying the area of modern Iraq. Babylonian algebra B.M. Tablet 13901-front (From: The Babylonian Quadratic Equation, by A.E. Berryman, Math. Gazette, 40 (1956), 185-192) B.M. Tablet 13901-back Time Passes . Centuries and then millennia pass. In those years empires rose and fell. The Greeks invented mathematics as we know it, and in Alexandria produced the first scientific revolution. The Roman empire forgot almost all that the Greeks had done in math and science. Germanic tribes put an end to the Roman empire, Arabic tribes invaded Europe, and the Ottoman empire began forming in the east. Time passes . Wars, and wars, and wars. Christians against Arabs. Christians against Turks. Christians against Christians. The Roman empire crumbled, the Holy Roman Germanic empire appeared. Nations as we know them today started to form. And we approach the year 1500, and the Renaissance; but I want to mention two events preceding it. Al-Khwarismi (~790-850) Abu Ja'far Muhammad ibn Musa Al-Khwarizmi was born during the reign of the most famous of all Caliphs of the Arabic empire with capital in Baghdad: Harun al Rashid; the one mentioned in the 1001 Nights. He wrote a book that was to become very influential Hisab al-jabr w'al-muqabala in which he studies quadratic (and linear) equations.
    [Show full text]
  • View This Volume's Front and Back Matter
    i i “IrvingBook” — 2013/5/22 — 15:39 — page i — #1 i i 10.1090/clrm/043 Beyond the Quadratic Formula i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page ii — #2 i i c 2013 by the Mathematical Association of America, Inc. Library of Congress Catalog Card Number 2013940989 Print edition ISBN 978-0-88385-783-0 Electronic edition ISBN 978-1-61444-112-0 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page iii — #3 i i Beyond the Quadratic Formula Ron Irving University of Washington Published and Distributed by The Mathematical Association of America i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page iv — #4 i i Council on Publications and Communications Frank Farris, Chair Committee on Books Gerald M. Bryce, Chair Classroom Resource Materials Editorial Board Gerald M. Bryce, Editor Michael Bardzell Jennifer Bergner Diane L. Herrmann Paul R. Klingsberg Mary Morley Philip P. Mummert Mark Parker Barbara E. Reynolds Susan G. Staples Philip D. Straffin Cynthia J Woodburn i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page v — #5 i i CLASSROOM RESOURCE MATERIALS Classroom Resource Materials is intended to provide supplementary class- room material for students—laboratory exercises, projects, historical in- formation, textbooks with unusual approaches for presenting mathematical ideas, career information, etc. 101 Careers in Mathematics, 2nd edition edited by Andrew Sterrett Archimedes: What Did He Do Besides Cry Eureka?, Sherman Stein Beyond the Quadratic Formula, Ronald S.
    [Show full text]
  • History of Algebra
    History of Algebra The term algebra usually denotes various kinds of mathematical ideas and techniques, more or less directly associated with formal manipulation of abstract symbols and/or with finding the solutions of an equation. The notion that in mathematics there is such a sepa- rate sub-discipline, as well as the very use of the term “algebra” to denote it, are them- selves the outcome of historical evolution of ideas. The ideas to be discussed in this article are sometimes put under the same heading due to historical circumstances no less than to any “essential” mathematical reason. Part I. The long way towards the idea of “equation” Simple and natural as the notion of “equation” may appear now, it involves a great amount of mutually interacting, individual mathematical notions, each of which was the outcome of a long and intricate historical process. Not before the work of Viète, in the late sixteenth century, do we actually find a fully consolidated idea of an equation in the sense of a sin- gle mathematical entity comprising two sides on which operations can be simultaneously performed. By performing such operations the equation itself remains unchanged, but we are led to discovering the value of the unknown quantities appearing in it. Three main threads in the process leading to this consolidation deserve special attention here: (1) attempts to deal with problems devoted to finding the values of one or more unknown quantities. In Part I, the word “equation” is used in this context as a short-hand to denote all such problems,
    [Show full text]
  • PAOLO RUFFINI (September 22, 1765 – May 10, 1822) by HEINZ KLAUS
    PAOLO RUFFINI (September 22, 1765 – May 10, 1822) by HEINZ KLAUS STRICK, Germany Born in the small town of Valentano, halfway between Rome and Siena, PAOLO RUFFINI grew up as the son of a doctor. Later the family moved to Modena (Emilia-Romagna), where PAOLO began studying mathematics, medicine, philosophy and literature at the university at the age of 18. When his calculus professor was appointed administrator of the princely estates by the Duke of Modena and Reggio, the student RUFFINI was assigned to give the calculus lectures. In the following year (1788), he finished his studies with degrees in philosophy, medicine and mathematics and was appointed Professor of the Fundamentals of Calculus. (drawings © Andreas Strick) And when three years later his former geometry professor had to give up teaching for health reasons, RUFFINI's appointment as Professor of the Foundations of Mathematics followed. In the same year he was also licensed to practise medicine. In 1795, the French revolutionary troops began the conquest of northern Italy, and finally, in June 1797, NAPOLEON proclaimed the Cisalpine Republic as a French "daughter republic" with Milan as its capital. Against his will, RUFFINI was appointed as a delegate to one of the chambers of the newly founded state. He soon succeeded in relinquishing this unloved office and resumed his university activities. This was short-lived, however, as he was obliged to take an oath to the constitution of the republic, which he refused to do for religious reasons. RUFFINI bore his dismissal from the university service with great equanimity, because it gave him more time to treat his patients, to whom he devoted himself with great dedication.
    [Show full text]
  • MATH 480-01 (43128): Topics in History of Mathematics JB-387, Tuth 6-7:50PM SYLLABUS Spring 2013
    480a.htm MATH 480-01 (43128): Topics in History of Mathematics JB-387, TuTh 6-7:50PM SYLLABUS Spring 2013 John Sarli JB-326 (909)537-5374 [email protected] TuTh 11AM-1PM, or by appointment Text: V.S. Varadarajan, Algebra in Ancient and Modern Times (AMS Mathematical World Vol. 12, 1998) ISBN 0-8218-0989-X Prerequisites: MATH 252, MATH 329, MATH 345, MATH 355 This is a mathematics course structured around historical developments that produced our current understanding of algebraic equations. Rather than being comprehensive, we will focus on a few ideas dating from antiquity that will help explain the interpretation of solutions to algebraic equations in terms of roots of polynomials. This modern interpretation required the systematic development of numbers from their early representation as geometric quantities to their formalization, more than two thousand years later, as structured algebraic systems. One of our objectives is to come to an understanding of why we teach algebra the way we do. The above text will be used as a guide. We will not cover all of it but you should read as much of it as possible. I will supplement its topics with notes that will appear on my website www.math.csusb.edu/faculty/sarli/ along with this syllabus. In order to maintain a seminar approach to this course (active participation through discussion) the grading will be based on just four components, 25% each: 1) First Written Project; 2) First Exam; 3) Second Written Project; 4) Final exam. As the course progresses I will make suggestions for suitable project topics, some of which will derive from exercises in the text.
    [Show full text]
  • Mathematics in Ancient China
    Mathematics in Ancient China Chapter 7 Timeline Archaic Old Kingdom Int Middle Kingdom Int New Kingdom EGYPT 3000 BCE 2500 BCE 2000 BCE 1500 BCE 1000 BCE Sumaria Akkadia Int Old Babylon Assyria MESOPOTAM IA 3000 BCE 2500 BCE 2000 BCE 1500 BCE 1000 BCE 500 BCE 0 CE 500 CE Classical Minoan Mycenaean Dark Archaic Christian Hellenistic Roman GREECE 3000 BCE 2500 BCE 2000 BCE 1500 BCE 1000 BCE 500 BCE 0 CE 500 CE 1000 CE 1500 CE Warring CHINA Shang Zhou Han Warring States Tang Yuan / Ming States Song Gnomon, Liu Hui Nine Chapters Zu Chongzhi Li Zhi Qin Jiushao Yang Hui Zhu Shijie Early Timeline • Shang Dynasty: Excavations near Huang River, dating to 1600 BC, showed “oracle bones” –tortoise shells with inscriptions used for divination. This is the source of what we know about early Chinese number systems. Early Timeline Han Dynasty ( 206 BC –220 AD) • System of Education especially for civil servants, i.e. scribes. • Two important books*: • Zhou Bi Suan Jing (Arithmetical Classic of the Gnomon and the Circular Paths of Heaven) • Jiu Zhang Suan Shu (Nine Chapters on the Mathematical Art) *unless of course we’re off by a millennium or so. Nine Chapters • This second book, Nine Chapters, became central to mathematical work in China for centuries. It is by far the most important mathematical work of ancient China. Later scholars wrote commentaries on it in the same way that commentaries were written on The Elements. Chapters in … uh, the Nine Chapters 1. Field measurements, areas, fractions 2. Percentages and proportions 3.
    [Show full text]
  • An Historical
    International Letters of Social and Humanistic Sciences Submitted: 2016-01-21 ISSN: 2300-2697, Vol. 66, pp 154-161 Accepted: 2016-02-03 doi:10.18052/www.scipress.com/ILSHS.66.154 Online: 2016-02-03 CC BY 4.0. Published by SciPress Ltd, Switzerland, 2016 An historical - didactic introduction to algebra Paolo Di Sia1,2,3 1University of Verona, Lungadige Porta Vittoria 17, I-37129 Verona (Italy) 2Higher Institute of Religious Science, Via Alto Adige 28, I-39100 Bolzano (Italy) 3ISEM, Institute for Scientific Methodology, I-90146 Palermo (Italy) E-mail address: [email protected] Web-page: www.paolodisia.com Keywords: Mathematics; Algebra; Didactics; Pedagogy; History of Science; Philosophy of Science. ABSTRACT. In this paper we consider a teaching educational introduction to ideas and concepts of algebra. We follow a historical path, starting by the Egyptians and the Babylonians, passing through the Greeks, the Arabs, and the figure of Omar Khayyām, for coming to the Middle Age, the Renaissance, and the nineteenth century. Interesting and peculiar characteristics related to the different geographical areas in which algebra has developed are taken into account. The scientific rigorous followed treatment allows the use of the paper also as a pedagogical introduction to this fundamental branch of current mathematics. 1. INTRODUCTION It can be said that algebra is the use of analytical methods applied to arithmetics. In this context, the adjective “analytic” has a different connotation from that which is normally understood in mathematics; it refers rather to the philosophical positions of Descartes, who as first explicitly introduced the dichotomy “analysis - synthesis”.
    [Show full text]
  • Mathematics, Faith and Politics During the Italian Risorgimento Snapshot Two – Mutual Goals and Collaboration
    Mathematics, Faith and Politics during the Italian Risorgimento Snapshot Two – Mutual Goals and Collaboration Introduction In the previous snapshot from early nineteenth century Naples we examined controversies between the Fergola’s synthetic school of the geometry and that of analytics who focused on the mathematization of science. While the debate was framed in terms of the right way to do geometry, in actuality these disagreements were a direct result of changes occurring in Neapolitan society during the French occupation and subsequent Restoration period, in which the Bourbon monarchy was returned to power. Our second snapshot looks at mid-nineteenth century Italy and the collaborative efforts of Italian mathematicians from different religious and political persuasions to establish an Italian school of mathematics, which would rival those of France, Germany and England. Snapshot Two: Mutual Goals and Collaboration The early to mid-nineteenth century in Italy is often referred to as the Risorgimento, a national rebirth of Italy with broad cultural, social, and economic revival. Politically its themes were independence from foreign rulers, unification of the Italian peninsula and liberty for its citizens. It was also a time of a rebirth of Italian mathematics. While many reforms enacted by the French were put on hold with the Congress of Vienna’s establishment of Restoration governments, movements within the scientific community, including annual scientific congresses, a proliferation of general disciplinary journals and a gathering of statistical information, all helped develop a sense of an Italian scientific community. The scientific congresses were especially significant as they provided one of the first opportunities for scientists from across the different Italian regions to meet each other, to exchange ideas, and to debate both scientific and political ideas.
    [Show full text]
  • Abel–Ruffini Theorem - Wikipedia, the Free Encyclopedia
    Abel–Ruffini theorem - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Abel–Ruffini_theorem Abel–Ruffini theorem From Wikipedia, the free encyclopedia In algebra, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no general algebraic solution—that is, solution in radicals— to polynomial equations of degree five or higher.[1] The theorem is named after Paolo Ruffini, who made an incomplete proof in 1799, and Niels Henrik Abel, who provided a proof in 1823. Évariste Galois independently proved the theorem in a work that was posthumously published in 1846.[2] Contents 1 Interpretation 2 Lower-degree polynomials 3 Quintics and higher 4 Proof 5 History 6 See also 7 Notes 8 References 9 External links Interpretation The content of this theorem is frequently misunderstood. It does not assert that higher-degree polynomial equations are unsolvable. In fact, the opposite is true: every non-constant polynomial equation in one unknown, with real or complex coefficients, has at least one complex number as solution; this is the fundamental theorem of algebra. Although the solutions cannot always be expressed exactly with radicals, they can be computed to any desired degree of accuracy using numerical methods such as the Newton–Raphson method or Laguerre method, and in this way they are no different from solutions to polynomial equations of the second, third, or fourth degrees. The theorem only concerns the form that such a solution must take. The theorem says that not all solutions of higher-degree equations can be obtained by starting with the equation's coefficients and rational constants, and repeatedly forming sums, differences, products, quotients, and radicals (n-th roots, for some integer n) of previously obtained numbers.
    [Show full text]
  • Paolo Ruffini
    PAOLO RUFFINI (September 22, 1765 – May 10, 1822) by HEINZ KLAUS STRICK, Germany Born in the small town of Valentano, halfway between Rome and Siena, PAOLO RUFFINI grew up as the son of a doctor. Later the family moved to Modena (Emilia-Romagna), where PAOLO began studying mathematics, medicine, philosophy and literature at the university at the age of 18. When his calculus professor was appointed administrator of the princely estates by the Duke of Modena and Reggio, the student RUFFINI was assigned to give the calculus lectures. In the following year (1788), he finished his studies with degrees in philosophy, medicine and mathematics and was appointed Professor of the Fundamentals of Calculus. (drawings © Andreas Strick) And when three years later his former geometry professor had to give up teaching for health reasons, RUFFINI's appointment as Professor of the Foundations of Mathematics followed. In the same year he was also licensed to practise medicine. In 1795, the French revolutionary troops began the conquest of northern Italy, and finally, in June 1797, NAPOLEON proclaimed the Cisalpine Republic as a French "daughter republic" with Milan as its capital. Against his will, RUFFINI was appointed as a delegate to one of the chambers of the newly founded state. He soon succeeded in relinquishing this unloved office and resumed his university activities. This was short-lived, however, as he was obliged to take an oath to the constitution of the republic, which he refused to do for religious reasons. RUFFINI bore his dismissal from the university service with great equanimity, because it gave him more time to treat his patients, to whom he devoted himself with great dedication.
    [Show full text]
  • Arnold's Proof of Abel-Ruffini
    ARNOLD’S ELEMENTARY PROOF OF THE INSOLVABILITY OF THE QUINTIC LEO GOLDMAKHER ABSTRACT. We give a proof (due to Arnold) that there is no quintic formula. Somewhat more precisely, we show that any finite combination of the four field operations (+; −; ×; ÷), radicals, the trigonometric functions, and the exponential function will never produce a formula for producing a root of a general quintic polynomial. The proof is elementary, requiring no knowledge of abstract group theory or Galois theory. 1. PREREQUISITE IDEAS AND NOTATIONS To understand the arguments in this essay you don’t need to know Galois theory. You also don’t need to know abstract algebra or group theory. However, you do need to know about complex numbers and the complex plane C. Let’s begin with a basic Question. What is the definition of the imaginary number i? We all know the answer: it’s the square-root of −1. There’s only one problem. There are two square roots of −1! Thus, our definition defines two numbers ±i but doesn’t give a way to distinguish between them. So how can we define i without simultaneously defining −i? It turns out that this is impossible to do.1 Of course, we can arbitrarily label one of the two square-roots as i, and then this forces the other to be −i. But this choice is arbitrary, and demonstrates that there’s a fundamental symmetry between the two numbers ±i; the two are yoked together and are algebraically indistinguishable. This observation lies at the heart of Galois theory, which studies other symmetries between numbers (not just pairs of numbers, but also triples and quadruples etc.) and, using group theory to extract properties of the symmetries, deduces properties that such numbers must have.2 These types of ideas will play a major role in our discussion below, as well.
    [Show full text]
  • Witold Więsław (Wrocław)
    Witold Więsław (Wrocław) Matematyka Hoene-Wrońskiego i za jego czasów 0. Wstęp. Na wstępie należy zadać pytanie: czy Hoene-Wroński był polskim matematykiem? Odpowiedź jest raczej jednoznaczna: nie był. Ale uważał się za Polaka. Jego ojciec, Antoni Hoene, przybył z Czech. Podobnie, jak Mikołaj Łobaczewski, choć syn Polaka, nie był polskim matematykiem1. Łatwość, z jaką Hoene-Wroński przeszedł na służbę rosyjską pozwala domniemywać, że bardziej kierowały nim pobudki osobiste, aniżeli patriotyczne. Nie studiował w Polsce, tylko za granicą. Niektórzy biografowie podejrzewają2, że uczył się w Korpusie Kadetów w Warszawie. Jednak przypuszczenie to nie znajduje potwierdzenia w faktach3. Nie miał więc Wroński żadnych związków z nauką w Polsce. A nauczanie na uniwersytetach w Krakowie i w Wilnie nie odbiegało od ówczesnych standardów europejskich4. Zostanie to przedstawione w ustępie 3. Po studiach Wroński przebywał we Francji, tam publikował i to wyłącznie w języku francuskim. W opracowaniach poświęconych polskim uczonym wymieniany jest zapewne tylko z powodu polskiego pochodzenia. Swoje dzieło Wstęp do filozofii matematyki dedykował cesarzowi Rosji, Aleksandrowi I.5 Ale już rok później pracę o rozwiązywaniu równań algebraicznych dedykował Polsce6. Nie on jedyny wykazywał serwilizm w stosunku do cara Aleksandra I. Podobną dedykację znajdujemy w tłumaczeniu Józefa Czecha Elementów Euklidesa (Wilno, 1807). Jan Śniadecki, niewątpliwie polski patriota, w wielu swoich drukowanych wystąpieniach pisał peany na cześć tego cara. Wynikało to nie tylko z istniejącej sytuacji politycznej, lecz także z niewątpliwych zasług cara dla rozwoju Uniwersytetu Wileńskiego i Wileńskiego Okręgu Szkolnego. Zarówno na Uniwersytecie, jak i w szkołach, językiem wykładowym pozostawał, jak w czasach Komisji Edukacji Narodowej nadal język polski. Hoene-Wroński nie był znany ówczesnym uczonym polskim.
    [Show full text]